File size: 18,206 Bytes
a1d409e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
"""
 coding=utf-8
 Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal, Huggingface team :)
 Adapted From Facebook Inc, Detectron2

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

     http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.import copy
 """

import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from hashlib import sha256
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile

import cv2
import numpy as np
import requests
import wget
from filelock import FileLock
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load


try:
    import torch

    _torch_available = True
except ImportError:
    _torch_available = False


try:
    from torch.hub import _get_torch_home

    torch_cache_home = _get_torch_home()
except ImportError:
    torch_cache_home = os.path.expanduser(
        os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch"))
    )

default_cache_path = os.path.join(torch_cache_home, "transformers")

CLOUDFRONT_DISTRIB_PREFIX = "https://cdn.huggingface.co"
S3_BUCKET_PREFIX = "https://s3.amazonaws.com/models.huggingface.co/bert"
PATH = "/".join(str(Path(__file__).resolve()).split("/")[:-1])
CONFIG = os.path.join(PATH, "config.yaml")
ATTRIBUTES = os.path.join(PATH, "attributes.txt")
OBJECTS = os.path.join(PATH, "objects.txt")
PYTORCH_PRETRAINED_BERT_CACHE = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path)
PYTORCH_TRANSFORMERS_CACHE = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE)
TRANSFORMERS_CACHE = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE)
WEIGHTS_NAME = "pytorch_model.bin"
CONFIG_NAME = "config.yaml"


def load_labels(objs=OBJECTS, attrs=ATTRIBUTES):
    vg_classes = []
    with open(objs) as f:
        for object in f.readlines():
            vg_classes.append(object.split(",")[0].lower().strip())

    vg_attrs = []
    with open(attrs) as f:
        for object in f.readlines():
            vg_attrs.append(object.split(",")[0].lower().strip())
    return vg_classes, vg_attrs


def load_checkpoint(ckp):
    r = OrderedDict()
    with open(ckp, "rb") as f:
        ckp = pkl.load(f)["model"]
    for k in copy.deepcopy(list(ckp.keys())):
        v = ckp.pop(k)
        if isinstance(v, np.ndarray):
            v = torch.tensor(v)
        else:
            assert isinstance(v, torch.tensor), type(v)
        r[k] = v
    return r


class Config:
    _pointer = {}

    def __init__(self, dictionary: dict, name: str = "root", level=0):
        self._name = name
        self._level = level
        d = {}
        for k, v in dictionary.items():
            if v is None:
                raise ValueError()
            k = copy.deepcopy(k)
            v = copy.deepcopy(v)
            if isinstance(v, dict):
                v = Config(v, name=k, level=level + 1)
            d[k] = v
            setattr(self, k, v)

        self._pointer = d

    def __repr__(self):
        return str(list((self._pointer.keys())))

    def __setattr__(self, key, val):
        self.__dict__[key] = val
        self.__dict__[key.upper()] = val
        levels = key.split(".")
        last_level = len(levels) - 1
        pointer = self._pointer
        if len(levels) > 1:
            for i, l in enumerate(levels):
                if hasattr(self, l) and isinstance(getattr(self, l), Config):
                    setattr(getattr(self, l), ".".join(levels[i:]), val)
                if l == last_level:
                    pointer[l] = val
                else:
                    pointer = pointer[l]

    def to_dict(self):
        return self._pointer

    def dump_yaml(self, data, file_name):
        with open(f"{file_name}", "w") as stream:
            dump(data, stream)

    def dump_json(self, data, file_name):
        with open(f"{file_name}", "w") as stream:
            json.dump(data, stream)

    @staticmethod
    def load_yaml(config):
        with open(config) as stream:
            data = load(stream, Loader=Loader)
        return data

    def __str__(self):
        t = "    "
        if self._name != "root":
            r = f"{t * (self._level-1)}{self._name}:\n"
        else:
            r = ""
        level = self._level
        for i, (k, v) in enumerate(self._pointer.items()):
            if isinstance(v, Config):
                r += f"{t * (self._level)}{v}\n"
                self._level += 1
            else:
                r += f"{t * (self._level)}{k}: {v} ({type(v).__name__})\n"
            self._level = level
        return r[:-1]

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
        return cls(config_dict)

    @classmethod
    def get_config_dict(cls, pretrained_model_name_or_path: str, **kwargs):
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)

        if os.path.isdir(pretrained_model_name_or_path):
            config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
        elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
            config_file = pretrained_model_name_or_path
        else:
            config_file = hf_bucket_url(pretrained_model_name_or_path, filename=CONFIG_NAME, use_cdn=False)

        try:
            # Load from URL or cache if already cached
            resolved_config_file = cached_path(
                config_file,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
            )
            # Load config dict
            if resolved_config_file is None:
                raise EnvironmentError

            config_file = Config.load_yaml(resolved_config_file)

        except EnvironmentError:
            msg = "Can't load config for"
            raise EnvironmentError(msg)

        if resolved_config_file == config_file:
            print("loading configuration file from path")
        else:
            print("loading configuration file cache")

        return Config.load_yaml(resolved_config_file), kwargs


# quick compare tensors
def compare(in_tensor):
    out_tensor = torch.load("dump.pt", map_location=in_tensor.device)
    n1 = in_tensor.numpy()
    n2 = out_tensor.numpy()[0]
    print(n1.shape, n1[0, 0, :5])
    print(n2.shape, n2[0, 0, :5])
    assert np.allclose(n1, n2, rtol=0.01, atol=0.1), (
        f"{sum([1 for x in np.isclose(n1, n2, rtol=0.01, atol=0.1).flatten() if x is False])/len(n1.flatten())*100:.4f} %"
        " element-wise mismatch"
    )
    raise Exception("tensors are all good")

    # Hugging face functions below


def is_remote_url(url_or_filename):
    parsed = urlparse(url_or_filename)
    return parsed.scheme in ("http", "https")


def hf_bucket_url(model_id: str, filename: str, use_cdn=True) -> str:
    endpoint = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
    legacy_format = "/" not in model_id
    if legacy_format:
        return f"{endpoint}/{model_id}-{filename}"
    else:
        return f"{endpoint}/{model_id}/{filename}"


def http_get(
    url,
    temp_file,
    proxies=None,
    resume_size=0,
    user_agent=None,
):
    ua = "python/{}".format(sys.version.split()[0])
    if _torch_available:
        ua += "; torch/{}".format(torch.__version__)
    if isinstance(user_agent, dict):
        ua += "; " + "; ".join("{}/{}".format(k, v) for k, v in user_agent.items())
    elif isinstance(user_agent, str):
        ua += "; " + user_agent
    headers = {"user-agent": ua}
    if resume_size > 0:
        headers["Range"] = "bytes=%d-" % (resume_size,)
    response = requests.get(url, stream=True, proxies=proxies, headers=headers)
    if response.status_code == 416:  # Range not satisfiable
        return
    content_length = response.headers.get("Content-Length")
    total = resume_size + int(content_length) if content_length is not None else None
    progress = tqdm(
        unit="B",
        unit_scale=True,
        total=total,
        initial=resume_size,
        desc="Downloading",
    )
    for chunk in response.iter_content(chunk_size=1024):
        if chunk:  # filter out keep-alive new chunks
            progress.update(len(chunk))
            temp_file.write(chunk)
    progress.close()


def get_from_cache(
    url,
    cache_dir=None,
    force_download=False,
    proxies=None,
    etag_timeout=10,
    resume_download=False,
    user_agent=None,
    local_files_only=False,
):
    if cache_dir is None:
        cache_dir = TRANSFORMERS_CACHE
    if isinstance(cache_dir, Path):
        cache_dir = str(cache_dir)

    os.makedirs(cache_dir, exist_ok=True)

    etag = None
    if not local_files_only:
        try:
            response = requests.head(url, allow_redirects=True, proxies=proxies, timeout=etag_timeout)
            if response.status_code == 200:
                etag = response.headers.get("ETag")
        except (EnvironmentError, requests.exceptions.Timeout):
            # etag is already None
            pass

    filename = url_to_filename(url, etag)

    # get cache path to put the file
    cache_path = os.path.join(cache_dir, filename)

    # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
    # try to get the last downloaded one
    if etag is None:
        if os.path.exists(cache_path):
            return cache_path
        else:
            matching_files = [
                file
                for file in fnmatch.filter(os.listdir(cache_dir), filename + ".*")
                if not file.endswith(".json") and not file.endswith(".lock")
            ]
            if len(matching_files) > 0:
                return os.path.join(cache_dir, matching_files[-1])
            else:
                # If files cannot be found and local_files_only=True,
                # the models might've been found if local_files_only=False
                # Notify the user about that
                if local_files_only:
                    raise ValueError(
                        "Cannot find the requested files in the cached path and outgoing traffic has been"
                        " disabled. To enable model look-ups and downloads online, set 'local_files_only'"
                        " to False."
                    )
                return None

    # From now on, etag is not None.
    if os.path.exists(cache_path) and not force_download:
        return cache_path

    # Prevent parallel downloads of the same file with a lock.
    lock_path = cache_path + ".lock"
    with FileLock(lock_path):
        # If the download just completed while the lock was activated.
        if os.path.exists(cache_path) and not force_download:
            # Even if returning early like here, the lock will be released.
            return cache_path

        if resume_download:
            incomplete_path = cache_path + ".incomplete"

            @contextmanager
            def _resumable_file_manager():
                with open(incomplete_path, "a+b") as f:
                    yield f

            temp_file_manager = _resumable_file_manager
            if os.path.exists(incomplete_path):
                resume_size = os.stat(incomplete_path).st_size
            else:
                resume_size = 0
        else:
            temp_file_manager = partial(tempfile.NamedTemporaryFile, dir=cache_dir, delete=False)
            resume_size = 0

        # Download to temporary file, then copy to cache dir once finished.
        # Otherwise you get corrupt cache entries if the download gets interrupted.
        with temp_file_manager() as temp_file:
            print(
                "%s not found in cache or force_download set to True, downloading to %s",
                url,
                temp_file.name,
            )

            http_get(
                url,
                temp_file,
                proxies=proxies,
                resume_size=resume_size,
                user_agent=user_agent,
            )

        os.replace(temp_file.name, cache_path)

        meta = {"url": url, "etag": etag}
        meta_path = cache_path + ".json"
        with open(meta_path, "w") as meta_file:
            json.dump(meta, meta_file)

    return cache_path


def url_to_filename(url, etag=None):
    url_bytes = url.encode("utf-8")
    url_hash = sha256(url_bytes)
    filename = url_hash.hexdigest()

    if etag:
        etag_bytes = etag.encode("utf-8")
        etag_hash = sha256(etag_bytes)
        filename += "." + etag_hash.hexdigest()

    if url.endswith(".h5"):
        filename += ".h5"

    return filename


def cached_path(
    url_or_filename,
    cache_dir=None,
    force_download=False,
    proxies=None,
    resume_download=False,
    user_agent=None,
    extract_compressed_file=False,
    force_extract=False,
    local_files_only=False,
):
    if cache_dir is None:
        cache_dir = TRANSFORMERS_CACHE
    if isinstance(url_or_filename, Path):
        url_or_filename = str(url_or_filename)
    if isinstance(cache_dir, Path):
        cache_dir = str(cache_dir)

    if is_remote_url(url_or_filename):
        # URL, so get it from the cache (downloading if necessary)
        output_path = get_from_cache(
            url_or_filename,
            cache_dir=cache_dir,
            force_download=force_download,
            proxies=proxies,
            resume_download=resume_download,
            user_agent=user_agent,
            local_files_only=local_files_only,
        )
    elif os.path.exists(url_or_filename):
        # File, and it exists.
        output_path = url_or_filename
    elif urlparse(url_or_filename).scheme == "":
        # File, but it doesn't exist.
        raise EnvironmentError("file {} not found".format(url_or_filename))
    else:
        # Something unknown
        raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))

    if extract_compressed_file:
        if not is_zipfile(output_path) and not tarfile.is_tarfile(output_path):
            return output_path

        # Path where we extract compressed archives
        # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
        output_dir, output_file = os.path.split(output_path)
        output_extract_dir_name = output_file.replace(".", "-") + "-extracted"
        output_path_extracted = os.path.join(output_dir, output_extract_dir_name)

        if os.path.isdir(output_path_extracted) and os.listdir(output_path_extracted) and not force_extract:
            return output_path_extracted

        # Prevent parallel extractions
        lock_path = output_path + ".lock"
        with FileLock(lock_path):
            shutil.rmtree(output_path_extracted, ignore_errors=True)
            os.makedirs(output_path_extracted)
            if is_zipfile(output_path):
                with ZipFile(output_path, "r") as zip_file:
                    zip_file.extractall(output_path_extracted)
                    zip_file.close()
            elif tarfile.is_tarfile(output_path):
                tar_file = tarfile.open(output_path)
                tar_file.extractall(output_path_extracted)
                tar_file.close()
            else:
                raise EnvironmentError("Archive format of {} could not be identified".format(output_path))

        return output_path_extracted

    return output_path


def get_data(query, delim=","):
    assert isinstance(query, str)
    if os.path.isfile(query):
        with open(query) as f:
            data = eval(f.read())
    else:
        req = requests.get(query)
        try:
            data = requests.json()
        except Exception:
            data = req.content.decode()
            assert data is not None, "could not connect"
            try:
                data = eval(data)
            except Exception:
                data = data.split("\n")
        req.close()
    return data


def get_image_from_url(url):
    response = requests.get(url)
    img = np.array(Image.open(BytesIO(response.content)))
    return img


# to load legacy frcnn checkpoint from detectron
def load_frcnn_pkl_from_url(url):
    fn = url.split("/")[-1]
    if fn not in os.listdir(os.getcwd()):
        wget.download(url)
    with open(fn, "rb") as stream:
        weights = pkl.load(stream)
    model = weights.pop("model")
    new = {}
    for k, v in model.items():
        new[k] = torch.from_numpy(v)
        if "running_var" in k:
            zero = torch.tensor([0])
            k2 = k.replace("running_var", "num_batches_tracked")
            new[k2] = zero
    return new


def get_demo_path():
    print(f"{os.path.abspath(os.path.join(PATH, os.pardir))}/demo.ipynb")


def img_tensorize(im, input_format="RGB"):
    assert isinstance(im, str)
    if os.path.isfile(im):
        img = cv2.imread(im)
    else:
        img = get_image_from_url(im)
        assert img is not None, f"could not connect to: {im}"
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    if input_format == "RGB":
        img = img[:, :, ::-1]
    return img


def chunk(images, batch=1):
    return (images[i : i + batch] for i in range(0, len(images), batch))