File size: 2,182 Bytes
a1d409e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# we define a fixture function below and it will be "used" by
# referencing its name from tests

import os

import pytest
from attr import dataclass


os.environ["AWS_DEFAULT_REGION"] = "us-east-1"  # defaults region


@dataclass
class SageMakerTestEnvironment:
    framework: str
    role = "arn:aws:iam::558105141721:role/sagemaker_execution_role"
    hyperparameters = {
        "task_name": "mnli",
        "per_device_train_batch_size": 16,
        "per_device_eval_batch_size": 16,
        "do_train": True,
        "do_eval": True,
        "do_predict": True,
        "output_dir": "/opt/ml/model",
        "overwrite_output_dir": True,
        "max_steps": 500,
        "save_steps": 5500,
    }
    distributed_hyperparameters = {**hyperparameters, "max_steps": 1000}

    @property
    def metric_definitions(self) -> str:
        if self.framework == "pytorch":
            return [
                {"Name": "train_runtime", "Regex": "train_runtime.*=\D*(.*?)$"},
                {"Name": "eval_accuracy", "Regex": "eval_accuracy.*=\D*(.*?)$"},
                {"Name": "eval_loss", "Regex": "eval_loss.*=\D*(.*?)$"},
            ]
        else:
            return [
                {"Name": "train_runtime", "Regex": "train_runtime.*=\D*(.*?)$"},
                {"Name": "eval_accuracy", "Regex": "loss.*=\D*(.*?)]?$"},
                {"Name": "eval_loss", "Regex": "sparse_categorical_accuracy.*=\D*(.*?)]?$"},
            ]

    @property
    def base_job_name(self) -> str:
        return f"{self.framework}-transfromers-test"

    @property
    def test_path(self) -> str:
        return f"./tests/sagemaker/scripts/{self.framework}"

    @property
    def image_uri(self) -> str:
        if self.framework == "pytorch":
            return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04"
        else:
            return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04"


@pytest.fixture(scope="class")
def sm_env(request):
    request.cls.env = SageMakerTestEnvironment(framework=request.cls.framework)