Spaces:
Runtime error
Runtime error
File size: 14,636 Bytes
0b7b08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
#!/usr/bin/env python3
# Copyright (c) Megvii Inc. All rights reserved.
import inspect
import os
import sys
from collections import defaultdict
from loguru import logger
import cv2
import numpy as np
import torch
def get_caller_name(depth=0):
"""
Args:
depth (int): Depth of caller conext, use 0 for caller depth.
Default value: 0.
Returns:
str: module name of the caller
"""
# the following logic is a little bit faster than inspect.stack() logic
frame = inspect.currentframe().f_back
for _ in range(depth):
frame = frame.f_back
return frame.f_globals["__name__"]
class StreamToLoguru:
"""
stream object that redirects writes to a logger instance.
"""
def __init__(self, level="INFO", caller_names=("apex", "pycocotools")):
"""
Args:
level(str): log level string of loguru. Default value: "INFO".
caller_names(tuple): caller names of redirected module.
Default value: (apex, pycocotools).
"""
self.level = level
self.linebuf = ""
self.caller_names = caller_names
def write(self, buf):
full_name = get_caller_name(depth=1)
module_name = full_name.rsplit(".", maxsplit=-1)[0]
if module_name in self.caller_names:
for line in buf.rstrip().splitlines():
# use caller level log
logger.opt(depth=2).log(self.level, line.rstrip())
else:
sys.__stdout__.write(buf)
def flush(self):
# flush is related with CPR(cursor position report) in terminal
return sys.__stdout__.flush()
def isatty(self):
# when using colab, jax is installed by default and issue like
# https://github.com/Megvii-BaseDetection/YOLOX/issues/1437 might be raised
# due to missing attribute like`isatty`.
# For more details, checked the following link:
# https://github.com/google/jax/blob/10720258ea7fb5bde997dfa2f3f71135ab7a6733/jax/_src/pretty_printer.py#L54 # noqa
return sys.__stdout__.isatty()
def fileno(self):
# To solve the issue when using debug tools like pdb
return sys.__stdout__.fileno()
def redirect_sys_output(log_level="INFO"):
redirect_logger = StreamToLoguru(log_level)
sys.stderr = redirect_logger
sys.stdout = redirect_logger
def setup_logger(save_dir, distributed_rank=0, filename="log.txt", mode="a"):
"""setup logger for training and testing.
Args:
save_dir(str): location to save log file
distributed_rank(int): device rank when multi-gpu environment
filename (string): log save name.
mode(str): log file write mode, `append` or `override`. default is `a`.
Return:
logger instance.
"""
loguru_format = (
"<green>{time:YYYY-MM-DD HH:mm:ss}</green> | "
"<level>{level: <8}</level> | "
"<cyan>{name}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>"
)
logger.remove()
save_file = os.path.join(save_dir, filename)
if mode == "o" and os.path.exists(save_file):
os.remove(save_file)
# only keep logger in rank0 process
if distributed_rank == 0:
logger.add(
sys.stderr,
format=loguru_format,
level="INFO",
enqueue=True,
)
logger.add(save_file)
# redirect stdout/stderr to loguru
redirect_sys_output("INFO")
class WandbLogger(object):
"""
Log training runs, datasets, models, and predictions to Weights & Biases.
This logger sends information to W&B at wandb.ai.
By default, this information includes hyperparameters,
system configuration and metrics, model metrics,
and basic data metrics and analyses.
For more information, please refer to:
https://docs.wandb.ai/guides/track
https://docs.wandb.ai/guides/integrations/other/yolox
"""
def __init__(self,
project=None,
name=None,
id=None,
entity=None,
save_dir=None,
config=None,
val_dataset=None,
num_eval_images=100,
log_checkpoints=False,
**kwargs):
"""
Args:
project (str): wandb project name.
name (str): wandb run name.
id (str): wandb run id.
entity (str): wandb entity name.
save_dir (str): save directory.
config (dict): config dict.
val_dataset (Dataset): validation dataset.
num_eval_images (int): number of images from the validation set to log.
log_checkpoints (bool): log checkpoints
**kwargs: other kwargs.
Usage:
Any arguments for wandb.init can be provided on the command line using
the prefix `wandb-`.
Example
```
python tools/train.py .... --logger wandb wandb-project <project-name> \
wandb-name <run-name> \
wandb-id <run-id> \
wandb-save_dir <save-dir> \
wandb-num_eval_imges <num-images> \
wandb-log_checkpoints <bool>
```
The val_dataset argument is not open to the command line.
"""
try:
import wandb
self.wandb = wandb
except ModuleNotFoundError:
raise ModuleNotFoundError(
"wandb is not installed."
"Please install wandb using pip install wandb"
)
from yolox.data.datasets import VOCDetection
self.project = project
self.name = name
self.id = id
self.save_dir = save_dir
self.config = config
self.kwargs = kwargs
self.entity = entity
self._run = None
self.val_artifact = None
if num_eval_images == -1:
self.num_log_images = len(val_dataset)
else:
self.num_log_images = min(num_eval_images, len(val_dataset))
self.log_checkpoints = (log_checkpoints == "True" or log_checkpoints == "true")
self._wandb_init = dict(
project=self.project,
name=self.name,
id=self.id,
entity=self.entity,
dir=self.save_dir,
resume="allow"
)
self._wandb_init.update(**kwargs)
_ = self.run
if self.config:
self.run.config.update(self.config)
self.run.define_metric("train/epoch")
self.run.define_metric("val/*", step_metric="train/epoch")
self.run.define_metric("train/step")
self.run.define_metric("train/*", step_metric="train/step")
self.voc_dataset = VOCDetection
if val_dataset and self.num_log_images != 0:
self.val_dataset = val_dataset
self.cats = val_dataset.cats
self.id_to_class = {
cls['id']: cls['name'] for cls in self.cats
}
self._log_validation_set(val_dataset)
@property
def run(self):
if self._run is None:
if self.wandb.run is not None:
logger.info(
"There is a wandb run already in progress "
"and newly created instances of `WandbLogger` will reuse"
" this run. If this is not desired, call `wandb.finish()`"
"before instantiating `WandbLogger`."
)
self._run = self.wandb.run
else:
self._run = self.wandb.init(**self._wandb_init)
return self._run
def _log_validation_set(self, val_dataset):
"""
Log validation set to wandb.
Args:
val_dataset (Dataset): validation dataset.
"""
if self.val_artifact is None:
self.val_artifact = self.wandb.Artifact(name="validation_images", type="dataset")
self.val_table = self.wandb.Table(columns=["id", "input"])
for i in range(self.num_log_images):
data_point = val_dataset[i]
img = data_point[0]
id = data_point[3]
img = np.transpose(img, (1, 2, 0))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
if isinstance(id, torch.Tensor):
id = id.item()
self.val_table.add_data(
id,
self.wandb.Image(img)
)
self.val_artifact.add(self.val_table, "validation_images_table")
self.run.use_artifact(self.val_artifact)
self.val_artifact.wait()
def _convert_prediction_format(self, predictions):
image_wise_data = defaultdict(int)
for key, val in predictions.items():
img_id = key
try:
bboxes, cls, scores = val
except KeyError:
bboxes, cls, scores = val["bboxes"], val["categories"], val["scores"]
# These store information of actual bounding boxes i.e. the ones which are not None
act_box = []
act_scores = []
act_cls = []
if bboxes is not None:
for box, classes, score in zip(bboxes, cls, scores):
if box is None or score is None or classes is None:
continue
act_box.append(box)
act_scores.append(score)
act_cls.append(classes)
image_wise_data.update({
int(img_id): {
"bboxes": [box.numpy().tolist() for box in act_box],
"scores": [score.numpy().item() for score in act_scores],
"categories": [
self.val_dataset.class_ids[int(act_cls[ind])]
for ind in range(len(act_box))
],
}
})
return image_wise_data
def log_metrics(self, metrics, step=None):
"""
Args:
metrics (dict): metrics dict.
step (int): step number.
"""
for k, v in metrics.items():
if isinstance(v, torch.Tensor):
metrics[k] = v.item()
if step is not None:
metrics.update({"train/step": step})
self.run.log(metrics)
else:
self.run.log(metrics)
def log_images(self, predictions):
if len(predictions) == 0 or self.val_artifact is None or self.num_log_images == 0:
return
table_ref = self.val_artifact.get("validation_images_table")
columns = ["id", "predicted"]
for cls in self.cats:
columns.append(cls["name"])
if isinstance(self.val_dataset, self.voc_dataset):
predictions = self._convert_prediction_format(predictions)
result_table = self.wandb.Table(columns=columns)
for idx, val in table_ref.iterrows():
avg_scores = defaultdict(int)
num_occurrences = defaultdict(int)
id = val[0]
if isinstance(id, list):
id = id[0]
if id in predictions:
prediction = predictions[id]
boxes = []
for i in range(len(prediction["bboxes"])):
bbox = prediction["bboxes"][i]
x0 = bbox[0]
y0 = bbox[1]
x1 = bbox[2]
y1 = bbox[3]
box = {
"position": {
"minX": min(x0, x1),
"minY": min(y0, y1),
"maxX": max(x0, x1),
"maxY": max(y0, y1)
},
"class_id": prediction["categories"][i],
"domain": "pixel"
}
avg_scores[
self.id_to_class[prediction["categories"][i]]
] += prediction["scores"][i]
num_occurrences[self.id_to_class[prediction["categories"][i]]] += 1
boxes.append(box)
else:
boxes = []
average_class_score = []
for cls in self.cats:
if cls["name"] not in num_occurrences:
score = 0
else:
score = avg_scores[cls["name"]] / num_occurrences[cls["name"]]
average_class_score.append(score)
result_table.add_data(
idx,
self.wandb.Image(val[1], boxes={
"prediction": {
"box_data": boxes,
"class_labels": self.id_to_class
}
}
),
*average_class_score
)
self.wandb.log({"val_results/result_table": result_table})
def save_checkpoint(self, save_dir, model_name, is_best, metadata=None):
"""
Args:
save_dir (str): save directory.
model_name (str): model name.
is_best (bool): whether the model is the best model.
metadata (dict): metadata to save corresponding to the checkpoint.
"""
if not self.log_checkpoints:
return
if "epoch" in metadata:
epoch = metadata["epoch"]
else:
epoch = None
filename = os.path.join(save_dir, model_name + "_ckpt.pth")
artifact = self.wandb.Artifact(
name=f"run_{self.run.id}_model",
type="model",
metadata=metadata
)
artifact.add_file(filename, name="model_ckpt.pth")
aliases = ["latest"]
if is_best:
aliases.append("best")
if epoch:
aliases.append(f"epoch-{epoch}")
self.run.log_artifact(artifact, aliases=aliases)
def finish(self):
self.run.finish()
@classmethod
def initialize_wandb_logger(cls, args, exp, val_dataset):
wandb_params = dict()
prefix = "wandb-"
for k, v in zip(args.opts[0::2], args.opts[1::2]):
if k.startswith("wandb-"):
try:
wandb_params.update({k[len(prefix):]: int(v)})
except ValueError:
wandb_params.update({k[len(prefix):]: v})
return cls(config=vars(exp), val_dataset=val_dataset, **wandb_params)
|