Spaces:
Runtime error
Runtime error
File size: 6,800 Bytes
a1d409e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Pipeline per l'inferenza
La [`pipeline`] rende semplice usare qualsiasi modello dal [Model Hub](https://huggingface.co/models) per fare inferenza su diversi compiti come generazione del testo, segmentazione di immagini e classificazione di audio. Anche se non hai esperienza con una modalità specifica o non comprendi bene il codice che alimenta i modelli, è comunque possibile utilizzarli con l'opzione [`pipeline`]! Questa esercitazione ti insegnerà a:
* Usare una [`pipeline`] per fare inferenza.
* Usare uno specifico tokenizer o modello.
* Usare una [`pipeline`] per compiti che riguardano audio e video.
<Tip>
Dai un'occhiata alla documentazione di [`pipeline`] per una lista completa dei compiti supportati.
</Tip>
## Utilizzo della Pipeline
Nonostante ogni compito abbia una [`pipeline`] associata, è più semplice utilizzare l'astrazione generica della [`pipeline`] che contiene tutte quelle specifiche per ogni mansione. La [`pipeline`] carica automaticamente un modello predefinito e un tokenizer in grado di fare inferenza per il tuo compito.
1. Inizia creando una [`pipeline`] e specificando il compito su cui fare inferenza:
```py
>>> from transformers import pipeline
>>> generator = pipeline(task="text-generation")
```
2. Inserisci il testo in input nella [`pipeline`]:
```py
>>> generator(
... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone"
... ) # doctest: +SKIP
[{'generated_text': 'Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone, Seven for the Iron-priests at the door to the east, and thirteen for the Lord Kings at the end of the mountain'}]
```
Se hai più di un input, inseriscilo in una lista:
```py
>>> generator(
... [
... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone",
... "Nine for Mortal Men, doomed to die, One for the Dark Lord on his dark throne",
... ]
... ) # doctest: +SKIP
```
Qualsiasi parametro addizionale per il tuo compito può essere incluso nella [`pipeline`]. La mansione `text-generation` ha un metodo [`~generation.GenerationMixin.generate`] con diversi parametri per controllare l'output. Ad esempio, se desideri generare più di un output, utilizza il parametro `num_return_sequences`:
```py
>>> generator(
... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone",
... num_return_sequences=2,
... ) # doctest: +SKIP
```
### Scegliere modello e tokenizer
La [`pipeline`] accetta qualsiasi modello dal [Model Hub](https://huggingface.co/models). Ci sono tag nel Model Hub che consentono di filtrare i modelli per attività. Una volta che avrai scelto il modello appropriato, caricalo usando la corrispondente classe `AutoModelFor` e [`AutoTokenizer`]. Ad esempio, carica la classe [`AutoModelForCausalLM`] per un compito di causal language modeling:
```py
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
```
Crea una [`pipeline`] per il tuo compito, specificando il modello e il tokenizer che hai caricato:
```py
>>> from transformers import pipeline
>>> generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
```
Inserisci il testo di input nella [`pipeline`] per generare del testo:
```py
>>> generator(
... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone"
... ) # doctest: +SKIP
[{'generated_text': 'Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone, Seven for the Dragon-lords (for them to rule in a world ruled by their rulers, and all who live within the realm'}]
```
## Audio pipeline
La flessibilità della [`pipeline`] fa si che possa essere estesa ad attività sugli audio.
Per esempio, classifichiamo le emozioni in questo clip audio:
```py
>>> from datasets import load_dataset
>>> import torch
>>> torch.manual_seed(42) # doctest: +IGNORE_RESULT
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> audio_file = ds[0]["audio"]["path"]
```
Trova un modello per la [classificazione audio](https://huggingface.co/models?pipeline_tag=audio-classification) sul Model Hub per eseguire un compito di riconoscimento automatico delle emozioni e caricalo nella [`pipeline`]:
```py
>>> from transformers import pipeline
>>> audio_classifier = pipeline(
... task="audio-classification", model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
... )
```
Inserisci il file audio nella [`pipeline`]:
```py
>>> preds = audio_classifier(audio_file)
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
>>> preds
[{'score': 0.1315, 'label': 'calm'}, {'score': 0.1307, 'label': 'neutral'}, {'score': 0.1274, 'label': 'sad'}, {'score': 0.1261, 'label': 'fearful'}, {'score': 0.1242, 'label': 'happy'}]
```
## Vision pipeline
Infine, usare la [`pipeline`] per le attività sulle immagini è praticamente la stessa cosa.
Specifica la tua attività e inserisci l'immagine nel classificatore. L'immagine può essere sia un link che un percorso sul tuo pc in locale. Per esempio, quale specie di gatto è raffigurata qui sotto?
![pipeline-cat-chonk](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg)
```py
>>> from transformers import pipeline
>>> vision_classifier = pipeline(task="image-classification")
>>> preds = vision_classifier(
... images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
... )
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
>>> preds
[{'score': 0.4335, 'label': 'lynx, catamount'}, {'score': 0.0348, 'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor'}, {'score': 0.0324, 'label': 'snow leopard, ounce, Panthera uncia'}, {'score': 0.0239, 'label': 'Egyptian cat'}, {'score': 0.0229, 'label': 'tiger cat'}]
```
|