Spaces:
Runtime error
Runtime error
File size: 19,566 Bytes
e770d90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
from lavis.datasets.builders import load_dataset
import torch
import more_itertools
from tqdm import tqdm
from coco_metric import compute_cider, postprocess_captioning_generation
import json
import time
import os
from transformers import LogitsProcessor, MinNewTokensLengthLogitsProcessor, ForcedEOSTokenLogitsProcessor
from PIL import Image
class VisualLogitsProcessor(LogitsProcessor):
def __init__(self, tokenizer):
super().__init__()
self.tokenizer = tokenizer
self.object_token_id = self.tokenizer("<|#object#|>", add_special_tokens=False)["input_ids"][-1]
self.prebox_token_id = self.tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
self.box_token_id = self.tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1]
self.previsual_token_id = self.tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
self.visual_token_id = self.tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
self.eos_token_id = self.tokenizer.encode(self.tokenizer.eos_token)[-1]
self.endofobject_token_id = self.tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1]
self.topk = 2
def __call__(self, input_ids, scores):
# print("decoding===>", self.tokenizer.decode(scores.sort(descending=True).indices.tolist()[0][:self.topk]))
# import pdb; pdb.set_trace()
if self.object_token_id in scores.sort(descending=True).indices.tolist()[0][1:self.topk] and self.eos_token_id not in scores.sort(descending=True).indices.tolist()[0][:self.topk] and (input_ids == self.object_token_id).sum() * 2 == (input_ids == self.endofobject_token_id).sum():
scores[0, self.object_token_id] = 1000
if input_ids[0, -1] == self.object_token_id and input_ids[0, -2] != self.prebox_token_id:
if (input_ids[0, :-1] == self.object_token_id).sum() != 0:
# print("generate a previsual token next")
scores[0, self.previsual_token_id] = 1000
elif input_ids[0, -1] == self.previsual_token_id or input_ids[0, -1] == self.visual_token_id:
# print("stop to run bbox generation for " + "previsual" if input_ids[0, -1] == self.previsual_token_id else "visual")
scores[0, self.eos_token_id] = 1000
elif input_ids[0, -1] == self.endofobject_token_id and input_ids[0, -2] != self.box_token_id:
# print("generate a visual token next")
scores[0, self.visual_token_id] = 1000
return scores
def prepare_batch_images(batch, image_processor):
batch_images = None
for b in batch:
b_image = image_processor(b["image"]).unsqueeze(0).unsqueeze(1).unsqueeze(0)
if batch_images is None:
batch_images = b_image
else:
batch_images = torch.cat([batch_images, b_image], dim=0)
return batch_images
def captioner(
model,tokenizer,image_ori,batch_images,input_ids,attention_mask,image_start_index_list,image_nums,added_bbox_list,debug=False):
"""Evaluate a model on COCO dataset.
Returns:
float: CIDEr score
"""
visual_logits_processor = VisualLogitsProcessor(tokenizer)
model.eval()
# model.eval().cuda()
lang_encoder_name = model.lang_encoder.__class__.__name__.lower()
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
box_token = "<|#box#|>"
prebox_token = "<|#prebox#|>"
endofobject_token = "<|#endofobject#|>"
object_token = "<|#object#|>"
ori_prompt_length = len(input_ids[0])
have_prebox = False
out_image = None
while True:
batch_images = batch_images
input_ids = input_ids
attention_mask = attention_mask
image_start_index_list = image_start_index_list
image_nums = image_nums
if debug:
print("input--->",tokenizer.decode(input_ids[0]))
p1 = MinNewTokensLengthLogitsProcessor(
prompt_length_to_skip=input_ids.shape[-1],
min_new_tokens=5,
eos_token_id=bos_token_id,
)
with torch.inference_mode():
outputs = model.generate(
batch_images,
input_ids,
attention_mask=attention_mask,
max_new_tokens=20,
# min_new_tokens=8,
num_beams=1,
# length_penalty=0,
image_start_index_list=image_start_index_list,
image_nums=image_nums,
added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
logits_processor_list=[p1, visual_logits_processor],
)
if debug:
print("outputs--->",tokenizer.decode(outputs[0]))
if outputs[0, -2] in [previsual_token_id, visual_token_id] and outputs[0, -1] == bos_token_id:
prompt = tokenizer.decode(outputs.clone()[0])
is_visual = (outputs[0, -2] == visual_token_id)
batch_text = tokenizer.batch_decode(outputs[:, :-1])
encodings = tokenizer(
batch_text,
padding="longest",
truncation=True,
return_tensors="pt",
max_length=2000,
)
input_ids = encodings["input_ids"]
attention_mask = encodings["attention_mask"]
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
image_start_index_list = [[x] for x in image_start_index_list]
image_nums = [1] * len(input_ids)
if debug:
print("get the visual bbox--->",tokenizer.decode(input_ids[0]))
with torch.no_grad():
outputs = model(
vision_x=batch_images,
lang_x=input_ids,
attention_mask=attention_mask,
image_nums=image_nums,
image_start_index_list=image_start_index_list,
added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
add_box=added_bbox_list is not None and len(added_bbox_list) != 0,
)
boxes = outputs["boxes"]
scores = outputs["scores"]
# if not model.valid:
# import pdb; pdb.set_trace()
if boxes is not None:
if is_visual:
if have_prebox:
added_bbox_list.pop()
prompt = prompt.replace("<|#previsual#|><|#prebox#|><|#object#|>", "")
have_prebox = False
if debug:
print("find previsual and remove it--->", prompt)
first_box = boxes[scores.argmax()]
added_bbox_list += [torch.tensor(first_box).unsqueeze(0) / 224]
prompt = prompt[:-len(tokenizer.eos_token)]
prompt += box_token + endofobject_token
if debug:
print("after inserting visual---->", prompt)
else:
import numpy as np
import cv2
open_cv_image = np.array(image_ori)
open_cv_image = open_cv_image[:, :, ::-1].copy()
for i, pre_box in enumerate(boxes):
open_cv_image = cv2.rectangle(open_cv_image, pre_box[:2].astype(int), pre_box[2:].astype(int), (0, 255, 0), i+1)
out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
# exit()
pre_box = boxes[scores.argmax()]
added_bbox_list += [torch.tensor(pre_box).unsqueeze(0).cuda() / 224]
prompt = prompt[:-len(tokenizer.eos_token)]
prompt += prebox_token + object_token
have_prebox = True
if debug:
print("after inserting previsual---->", prompt)
else:
if debug:
import pdb;pdb.set_trace()
prompt = tokenizer.decode(outputs[0, :-2].clone()[0])
else:
break
outputs = outputs[:, ori_prompt_length:]
outputs = postprocess_captioning_generation(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]).replace('"', "")
# new_predictions = [
# postprocess_captioning_generation(out).replace('"', "")
# for out in tokenizer.batch_decode(outputs, skip_special_tokens=True)
# ]
# import pdb; pdb.set_trace()
return outputs, out_image
def evaluate_coco_flickr(
model,
tokenizer,
image_processor,
batch_size,
is_flickr=False,
vis_embed_size=None,
rank=0,
world_size=1,
id=0,
debug=False,
):
"""Evaluate a model on COCO dataset.
Returns:
float: CIDEr score
"""
visual_logits_processor = VisualLogitsProcessor(tokenizer)
coco_dataset = load_dataset("coco_caption")
eval_dataset = coco_dataset["test"]
model.eval().cuda()
predictions = dict()
lang_encoder_name = model.lang_encoder.__class__.__name__.lower()
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
box_token = "<|#box#|>"
prebox_token = "<|#prebox#|>"
endofobject_token = "<|#endofobject#|>"
object_token = "<|#object#|>"
cnt = 0
if world_size > 1:
torch.distributed.barrier()
desc = "Running inference Flickr30" if is_flickr else "Running inference COCO"
for ii, batch in enumerate(more_itertools.chunked(
tqdm(eval_dataset, desc=desc, disable=(rank != 0)), batch_size
)):
if ii % world_size != rank:
continue
cnt += len(batch)
batch[0]["image"] = Image.open("/gpfs/u/home/LMCG/LMCGljnn/scratch/images/img3.jpg").resize((224, 224))
batch_images = prepare_batch_images(
batch=batch,
image_processor=image_processor,
).cuda()
prompt = f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>"
added_bbox_list = []
batch_text = [prompt for _ in batch]
encodings = tokenizer(
batch_text,
padding="longest",
truncation=True,
return_tensors="pt",
max_length=2000,
)
ori_prompt_length = len(encodings["input_ids"][0])
have_prebox = False
while True:
batch_text = [prompt for _ in batch]
encodings = tokenizer(
batch_text,
padding="longest",
truncation=True,
return_tensors="pt",
max_length=2000,
)
input_ids = encodings["input_ids"].cuda()
attention_mask = encodings["attention_mask"].cuda()
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
image_start_index_list = [[x] for x in image_start_index_list]
image_nums = [1] * len(input_ids)
if debug:
print("input--->",tokenizer.decode(input_ids[0]))
p1 = MinNewTokensLengthLogitsProcessor(
prompt_length_to_skip=input_ids.shape[-1],
min_new_tokens=5,
eos_token_id=bos_token_id,
)
with torch.inference_mode() and torch.cuda.amp.autocast(dtype=torch.float16):
outputs = model.generate(
batch_images,
input_ids,
attention_mask=attention_mask,
max_new_tokens=20,
# min_new_tokens=8,
num_beams=1,
# length_penalty=0,
image_start_index_list=image_start_index_list,
image_nums=image_nums,
added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
logits_processor_list=[p1, visual_logits_processor],
)
if debug:
print("outputs--->",tokenizer.decode(outputs[0]))
if outputs[0, -2] in [previsual_token_id, visual_token_id] and outputs[0, -1] == bos_token_id:
prompt = tokenizer.decode(outputs.clone()[0])
is_visual = (outputs[0, -2] == visual_token_id)
batch_text = tokenizer.batch_decode(outputs[:, :-1])
encodings = tokenizer(
batch_text,
padding="longest",
truncation=True,
return_tensors="pt",
max_length=2000,
)
input_ids = encodings["input_ids"].cuda()
attention_mask = encodings["attention_mask"].cuda()
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
image_start_index_list = [[x] for x in image_start_index_list]
image_nums = [1] * len(input_ids)
if debug:
print("get the visual bbox--->",tokenizer.decode(input_ids[0]))
with torch.cuda.amp.autocast(dtype=torch.float16) and torch.no_grad():
outputs = model(
vision_x=batch_images,
lang_x=input_ids,
attention_mask=attention_mask,
image_nums=image_nums,
image_start_index_list=image_start_index_list,
added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
add_box=added_bbox_list is not None and len(added_bbox_list) != 0,
)
boxes = outputs["boxes"]
scores = outputs["scores"]
# if not model.valid:
# import pdb; pdb.set_trace()
if boxes is not None:
if is_visual:
if have_prebox:
added_bbox_list.pop()
prompt = prompt.replace("<|#previsual#|><|#prebox#|><|#object#|>", "")
have_prebox = False
if debug:
print("find previsual and remove it--->", prompt)
first_box = boxes[scores.argmax()]
added_bbox_list += [torch.tensor(first_box).unsqueeze(0).cuda() / 224]
prompt = prompt[:-len(tokenizer.eos_token)]
prompt += box_token + endofobject_token
if debug:
print("after inserting visual---->", prompt)
else:
import numpy as np
import cv2
open_cv_image = np.array(batch[0]["image"])
open_cv_image = open_cv_image[:, :, ::-1].copy()
for i, pre_box in enumerate(boxes):
open_cv_image = cv2.rectangle(open_cv_image, pre_box[:2].astype(int), pre_box[2:].astype(int), (0, 255, 0), i+1)
cv2.imwrite("Atest.png", open_cv_image)
exit()
pre_box = boxes[scores.argmax()]
added_bbox_list += [torch.tensor(pre_box).unsqueeze(0).cuda() / 224]
prompt = prompt[:-len(tokenizer.eos_token)]
prompt += prebox_token + object_token
have_prebox = True
if debug:
print("after inserting previsual---->", prompt)
else:
import pdb;pdb.set_trace()
prompt = tokenizer.decode(outputs[0, :-2].clone()[0])
else:
break
outputs = outputs[:, ori_prompt_length:]
new_predictions = [
postprocess_captioning_generation(out).replace('"', "")
for out in tokenizer.batch_decode(outputs, skip_special_tokens=True)
]
# import pdb; pdb.set_trace()
if rank == 0:
tqdm.write(new_predictions[0])
for i, sample in enumerate(batch):
predictions[int(sample["image_id"])] = {
"caption": new_predictions[i],
}
print(new_predictions)
exit()
results_path = (
f"flickrresults_{lang_encoder_name}_{rank}_{id}.json"
if is_flickr
else f"cocoresults_{lang_encoder_name}_{rank}_{id}.json"
)
with open(results_path, "w") as f:
f.write(
json.dumps(
[
{"image_id": k, "caption": predictions[k]["caption"]}
for k in predictions
],
indent=2,
)
)
print("save to", results_path)
del predictions
time.sleep(10)
if world_size > 1:
torch.distributed.barrier()
if rank == 0:
print(f"evaluate on rank {rank}. world size is {world_size}")
predictions = []
for rank_i in range(world_size):
part_results_path = (
f"flickrresults_{lang_encoder_name}_{rank_i}_{id}.json"
if is_flickr
else f"cocoresults_{lang_encoder_name}_{rank_i}_{id}.json"
)
print("load", part_results_path)
predictions.extend(json.load(open(part_results_path)))
os.remove(part_results_path)
print("num:", len(predictions))
results_path = (
f"flickrresults_{lang_encoder_name}.json"
if is_flickr
else f"cocoresults_{lang_encoder_name}.json"
)
json.dump(predictions, open(results_path, "w"), indent=2)
metrics = compute_cider(
result_path=results_path,
annotations_path="/gpfs/u/home/LMCG/LMCGljnn/scratch/.cache/lavis/coco_gt/coco_karpathy_test_gt.json",
)
metrics["CIDEr"] *= 100
os.makedirs("eval_results", exist_ok=True)
acc = metrics["CIDEr"]
with open(os.path.join("eval_results", f"cococap_{model.expr_name}_{model.step_num}_{int(time.time())}_{acc}"), "w") as f:
f.write(json.dumps(predictions, indent=2))
# delete the temporary file
os.remove(results_path)
else:
metrics = {}
metrics["CIDEr"] = 0.0
return metrics["CIDEr"]
|