Spaces:
Runtime error
Runtime error
File size: 23,201 Bytes
0b7b08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
""" Main training script """
import argparse
import copy
import glob
import os
import random
import functools
import numpy as np
import torch
# torch.multiprocessing.set_sharing_strategy('file_system')
import wandb
from data2 import get_data
from distributed import init_distributed_device, world_info_from_env
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
MixedPrecision,
BackwardPrefetch,
ShardingStrategy,
FullStateDictConfig,
CPUOffload,
StateDictType,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import (
transformer_auto_wrap_policy,
enable_wrap,
wrap,
)
from train_utils import train_one_epoch
from transformers import (
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_linear_schedule_with_warmup,
)
from open_flamingo import create_model_and_transforms
from torch.utils.tensorboard import SummaryWriter
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.cuda.amp import GradScaler
from torch.distributed.optim import ZeroRedundancyOptimizer
import warnings
warnings.filterwarnings("ignore")
import logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s %(message)s',
datefmt='%m/%d %I:%M:%S',
)
class FakeDataloader:
def __iter__(self):
return self
def __next__(self):
return None
def random_seed(seed=42, rank=0):
torch.manual_seed(seed + rank)
np.random.seed(seed + rank)
random.seed(seed + rank)
def get_grouped_params(model, args):
params_with_wd, params_without_wd = [], []
def apply_decay(x):
x = x.lower()
return "norm" not in x and "bn" not in x and "bias" not in x and "embed" not in x and "wte" not in x and "flat_param" not in x
for n, p in model.named_parameters():
# if p.requires_grad:
if apply_decay(n):
if torch.distributed.get_rank() == 0:
logging.info(f"with wd: {n}")
params_with_wd.append(p)
else:
if torch.distributed.get_rank() == 0:
logging.info(f"without wd: {n}")
params_without_wd.append(p)
return [
{"params": params_with_wd, "weight_decay": args.weight_decay},
{"params": params_without_wd, "weight_decay": 0.0},
]
def lambda_policy_fn(module):
if (
len(list(module.named_children())) == 0
and getattr(module, "weight", None) is not None
and module.weight.requires_grad
):
return True
return False
def lambda_auto_wrap_policy(
module: torch.nn.Module, recurse: bool, nonwrapped_numel: int, lambda_fn,
) -> bool:
"""
A convenient auto wrap policy to wrap submodules based on an arbitrary user
function. If `lambda_fn(submodule) == True``, the submodule will be wrapped as
a `wrapper_cls` unit.
Return if a module should be wrapped during auto wrapping.
The first three parameters are required by :func:`_recursive_wrap`.
Args:
module (nn.Module): Current module being considered.
recurse (bool): If ``False``, then this function must decide whether
``module`` should be wrapped as an FSDP instance or not. If
``True``, then the function is still recursing down the module
tree as a part of the DFS.
nonwrapped_numel (int): Parameter numel not yet wrapped.
lambda_fn (Callable[[nn.Module], bool]): If this returns ``True``, then
this module will be wrapped.
"""
if recurse:
return True # always recurse
return lambda_fn(module)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--vision_encoder_path", default="ViT-B-16", type=str)
parser.add_argument("--vision_encoder_pretrained", default="laion2b_s34b_b88k", type=str)
parser.add_argument("--lm_path", default="facebook/opt-1.3b", type=str)
parser.add_argument(
"--tokenizer_path",
default="facebook/opt-1.3b",
type=str,
help="path to tokenizer",
)
parser.add_argument(
"--run_name",
type=str,
default="openflamingo3B",
help="used to name saving directory and wandb run",
)
parser.add_argument("--use_media_placement_augmentation", action="store_true")
parser.add_argument("--offline", action="store_true")
parser.add_argument("--num_steps", type=int, default=300000)
parser.add_argument(
"--logging_steps", type=int, default=10, help="log loss every n steps"
)
# Sum of gradient optimization batch size
parser.add_argument("--batch_size_mmc4", type=int, default=128)
parser.add_argument("--batch_size_laion", type=int, default=128)
parser.add_argument("--batch_size_pile", type=int, default=128)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
help="path to checkpoint to resume from, this should contain model, optimizer, and lr_scheduler states",
default=None,
)
parser.add_argument(
"--delete_previous_checkpoint",
action="store_true",
help="delete previous checkpoint when saving new checkpoint",
)
parser.add_argument(
"--laion_shards",
type=str,
help="path to laion shards, this should be a glob pattern such as /path/to/shards/shard-{0000..0999}.tar",
)
parser.add_argument(
"--mmc4_shards",
type=str,
help="path to c4 shards, this should be a glob pattern such as /path/to/shards/shard-{0000..0999}.tar",
)
parser.add_argument(
"--pile_shards",
type=str,
default=None,
help="path to pile shards, this should be a glob pattern such as /path/to/shards/shard-{0000..0999}.tar",
)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--learning_rate", default=1e-4, type=float)
parser.add_argument(
"--lr_scheduler",
default="constant",
type=str,
help="constant, linear, or cosine",
)
parser.add_argument("--loss_multiplier_mmc4", type=float, default=1.0)
parser.add_argument("--loss_multiplier_laion", type=float, default=1.0)
parser.add_argument("--loss_multiplier_pile", type=float, default=1.0)
parser.add_argument("--loss_multiplier_det", type=float, default=1.0)
parser.add_argument("--loss_multiplier_rel", type=float, default=1.0)
parser.add_argument("--loss_multiplier_attn", type=float, default=1.0)
parser.add_argument("--warmup_steps", default=5000, type=int)
# weight decay is only apply to YOLOX head if using FSDP
# https://medium.com/@huanghaian123/optimize-and-accelerate-yolox-with-rtmdet-hyps-in-mmyolo-80fc06d61159
parser.add_argument("--weight_decay", default=0.05, type=float)
parser.add_argument(
"--precision",
choices=["amp_fp16", "amp_bf16", "amp_bfloat16", "bf16", "fp16", "fp32"],
default="fp32",
help="Floating point precision.",
)
# data args
parser.add_argument("--workers", type=int, default=1)
parser.add_argument("--dataset_resampled", action="store_true")
# distributed training args
parser.add_argument(
"--dist-url",
default="env://",
type=str,
help="url used to set up distributed training",
)
parser.add_argument(
"--dist-backend", default="nccl", type=str, help="distributed backend"
)
parser.add_argument(
"--horovod",
default=False,
action="store_true",
help="Use horovod for distributed training.",
)
parser.add_argument(
"--no-set-device-rank",
default=False,
action="store_true",
help="Don't set device index from local rank (when CUDA_VISIBLE_DEVICES restricted to one per proc).",
)
# wandb args
parser.add_argument("--report_to_wandb", default=False, action="store_true")
parser.add_argument(
"--wandb_project",
type=str,
)
parser.add_argument(
"--wandb_entity",
type=str,
)
parser.add_argument(
"--save_checkpoints_to_wandb",
default=False,
action="store_true",
help="save checkpoints to wandb",
)
parser.add_argument(
"--checkpoint_activations",
default=False,
action="store_true",
)
parser.add_argument(
"--freeze_vision_encoder",
default=False,
action="store_true",
)
parser.add_argument(
"--mmc4_textsim_threshold",
default=30,
type=float,
help="threshold for filtering images in mmc4 based on image-text similarity",
)
parser.add_argument(
"--location_token_num",
default=1000,
type=int,
)
parser.add_argument(
"--vis_embed_size",
type=int,
required=False,
)
parser.add_argument(
"--save_interval",
default=1000,
type=int,
required=False,
)
parser.add_argument(
"--skip_delete_pattern",
default=1500,
type=int,
required=False,
)
parser.add_argument(
"--ddp",
default=False,
action="store_true",
)
parser.add_argument(
"--pile_freq",
default=1,
type=int,
required=False,
)
parser.add_argument(
"--restart",
default=False,
action="store_true",
)
parser.add_argument(
"--lora",
default=False,
action="store_true",
)
parser.add_argument(
"--lora_r",
default=16,
type=int,
required=False,
)
parser.add_argument(
"--single",
default=False,
action="store_true",
)
# Finetune
parser.add_argument(
"--instruct",
default=False,
action="store_true",
)
parser.add_argument(
"--fix-ffn",
default=False,
action="store_true",
)
parser.add_argument(
"--prob_ground",
default=1.0,
type=float,
required=False,
)
parser.add_argument(
"--optimizer",
default="adamw",
type=str,
required=False,
)
parser.add_argument(
"--add_visual_token",
default=False,
action="store_true",
)
parser.add_argument(
"--use_format_v2",
default=False,
action="store_true",
)
parser.add_argument(
"--use_sam",
default=None,
type=str,
required=False,
)
parser.add_argument(
"--max-length",
default=608,
type=int,
required=False,
)
parser.add_argument(
"--image-size",
default=256,
type=int,
required=False,
)
parser.add_argument(
"--reset_llm",
default=False,
action="store_true",
)
parser.add_argument(
"--add_box",
default=False,
action="store_true",
)
parser.add_argument(
"--add_pe",
default=False,
action="store_true",
)
parser.add_argument(
"--only_grounded_sample",
default=False,
action="store_true",
)
parser.add_argument(
"--expand",
default=False,
action="store_true",
)
parser.add_argument(
"--delete_contained",
default=False,
action="store_true",
)
parser.add_argument(
"--relation",
default=False,
action="store_true",
)
parser.add_argument(
"--attn_reg",
default="l1",
type=str,
required=False,
)
parser.add_argument(
"--enhance_data",
default=False,
action="store_true",
)
parser.add_argument(
"--no_visual",
default=False,
action="store_true",
)
parser.add_argument(
"--no_previsual",
default=False,
action="store_true",
)
parser.add_argument(
"--roi_align",
default=False,
action="store_true",
)
parser.add_argument(
"--roi_output_size",
default=4,
type=int,
required=False,
)
parser.add_argument(
"--apply_mask",
default=False,
action="store_true",
)
parser.add_argument(
"--longer_previsual",
default=False,
action="store_true",
)
args = parser.parse_args()
assert not args.use_media_placement_augmentation, "Do not enable use_media_placement_augmentation"
if args.no_previsual:
assert args.no_visual, "no_previsual MUST come with no_visual"
assert not args.enhance_data, "dont enable enhance_data"
if args.offline:
os.environ["WANDB_MODE"] = "offline"
os.environ["TRANSFORMERS_OFFLINE"] = "1"
args.local_rank, args.rank, args.world_size = world_info_from_env()
print(f"local_rank: {args.local_rank} rank: {args.rank} world_size: {args.world_size}")
device_id = init_distributed_device(args)
random_seed(args.seed)
model, image_processor, tokenizer, args.vis_embed_size = create_model_and_transforms(
args.vision_encoder_path,
args.vision_encoder_pretrained,
args.lm_path,
args.tokenizer_path if args.tokenizer_path else args.lm_path,
use_local_files=args.offline,
use_media_placement_augmentation=args.use_media_placement_augmentation,
checkpoint_activations=args.checkpoint_activations,
freeze_vision_encoder=args.freeze_vision_encoder,
location_token_num=args.location_token_num,
lora=args.lora,
lora_r=args.lora_r,
fix_ffn=args.fix_ffn,
add_visual_token=args.add_visual_token,
add_box=args.add_box,
add_pe=args.add_pe,
add_relation=args.relation,
use_format_v2=args.use_format_v2,
use_sam=args.use_sam,
enhance_data=args.enhance_data,
roi_align=args.roi_align,
roi_output_size=args.roi_output_size,
apply_mask=args.apply_mask,
)
if args.reset_llm:
llm_state_dict = model.lang_encoder.state_dict()
if args.rank == 0:
print(args)
print(image_processor)
random_seed(args.seed, args.rank)
if args.rank == 0 and args.report_to_wandb:
wandb.init(
project=args.wandb_project,
entity=args.wandb_entity,
name=args.run_name,
config=vars(args),
)
device_id = args.rank % torch.cuda.device_count()
if args.ddp:
print("use ddp mode")
model = model.to(device_id)
model = DDP(model)
else:
fpSixteen = MixedPrecision(
param_dtype=torch.float16,
# Gradient communication precision.
reduce_dtype=torch.float16,
# Buffer precision.
# buffer_dtype=torch.float16,
)
# from transformers.models.opt.modeling_opt import OPTDecoderLayer
from open_clip.transformer import ResidualAttentionBlock
from open_flamingo.src.flamingo_lm import FlamingoLayer
from transformers.models.opt.modeling_opt import OPTDecoderLayer, OPTAttention
from segment_anything.modeling.image_encoder import Block
transformer_layer_cls=[
FlamingoLayer,
ResidualAttentionBlock,
Block,
]
if args.fix_ffn:
transformer_layer_cls.append(OPTAttention)
auto_wrap_policy = functools.partial(
transformer_auto_wrap_policy,
transformer_layer_cls=transformer_layer_cls,
)
if args.lora:
from torch.distributed.fsdp.wrap import _or_policy
lambda_policy = functools.partial(lambda_auto_wrap_policy, lambda_fn=lambda_policy_fn)
auto_wrap_policy = functools.partial(_or_policy, policies=[lambda_policy, auto_wrap_policy])
ignored_modules = [model.vision_encoder]
# ignored_modules = None
else:
ignored_modules = [model.detection_head]
# ignored_modules = None
if args.add_pe:
ignored_modules += [model.pos_enc]
# if args.use_format_v2:
# ignored_modules += [model.lang_encoder.visual_guided_lm_head]
model = FSDP(
model,
auto_wrap_policy=auto_wrap_policy,
mixed_precision=fpSixteen,
device_id=torch.cuda.current_device(),
ignored_modules=ignored_modules,
sharding_strategy=ShardingStrategy.SHARD_GRAD_OP,
)
model = model.to(device_id)
pile_dataset = None
if args.instruct:
laion_dataset = get_data(args, image_processor, tokenizer, "instruct")
else:
laion_dataset = get_data(args, image_processor, tokenizer, "ground_image_text")
if args.pile_shards is not None:
pile_dataset = get_data(args, image_processor, tokenizer, "pile")
optim_groups = get_grouped_params(model, args)
# optimizer = torch.optim.AdamW(optim_groups, lr=args.learning_rate)
if args.ddp:
optimizer = torch.optim.AdamW(optim_groups, lr=args.learning_rate)
# optimizer = ZeroRedundancyOptimizer(
# optim_groups,
# optimizer_class=torch.optim.AdamW,
# lr=args.learning_rate,
# parameters_as_bucket_view=True,
# )
else:
if args.optimizer == "adamw":
print("use adamw")
optimizer = torch.optim.AdamW(optim_groups, lr=args.learning_rate)
elif args.optimizer == "sgd":
print("use sgd...")
optimizer = torch.optim.SGD(model.parameters(), lr=args.learning_rate)
else:
raise NotImplementedError
total_training_steps = args.num_steps
if args.rank == 0:
logging.info(f"Total training steps: {total_training_steps}")
if args.lr_scheduler == "linear":
lr_scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=total_training_steps,
)
elif args.lr_scheduler == "cosine":
lr_scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=total_training_steps,
)
else:
lr_scheduler = get_constant_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps
)
if args.ddp:
scaler = GradScaler()
else:
scaler = ShardedGradScaler()
total_laion_token = 0
total_pile_token = 0
total_laion_sample = 0
total_step = 0
# check if a checkpoint exists for this run
if os.path.exists(f"{args.run_name}"):
checkpoint_list = glob.glob(f"{args.run_name}/checkpoint_*.pt")
if len(checkpoint_list) == 0:
if args.rank == 0:
logging.info(f"Found no checkpoints for run {args.run_name}.")
else:
args.resume_from_checkpoint = sorted(
checkpoint_list, key=lambda x: int(x.split("_")[-1].split(".")[0])
)[-1]
if args.rank == 0:
logging.info(f"Found checkpoint {args.resume_from_checkpoint} for run {args.run_name}.")
args.restart = False
if args.rank == 0:
logging.info("do not restart because an existed checkpoint is found")
if args.resume_from_checkpoint is not None:
if args.rank == 0:
logging.info(f"Loading checkpoint from {args.resume_from_checkpoint}")
checkpoint = torch.load(args.resume_from_checkpoint, map_location="cpu")
torch.distributed.barrier()
if args.ddp:
model.module.load_state_dict(checkpoint["model_state_dict"], strict=False)
# sharded_osd = checkpoint['optimizer_state_dict']
else:
with FSDP.state_dict_type(model, StateDictType.FULL_STATE_DICT):
if args.reset_llm:
for key in checkpoint["model_state_dict"]:
if key.startswith("lang_encoder"):
if args.rank == 0:
logging.info(f"reset {key}")
llm_key = key.replace("lang_encoder.", "")
checkpoint["model_state_dict"][key] = llm_state_dict[llm_key]
model_state_dict = model.state_dict()
for key in checkpoint["model_state_dict"].keys():
if model_state_dict[key].shape != checkpoint["model_state_dict"][key].shape:
if args.rank == 0:
logging.info(f'{key}: shape mismatched! {model_state_dict[key].shape} vs {checkpoint["model_state_dict"][key].shape}')
checkpoint["model_state_dict"][key] = model_state_dict[key].clone()
del model_state_dict
model.load_state_dict(checkpoint["model_state_dict"], False)
# sharded_osd = FSDP.shard_full_optim_state_dict(checkpoint['optimizer_state_dict'], model, optim_input=optim_groups)
if not args.restart:
# optimizer.load_state_dict(sharded_osd)
lr_scheduler.load_state_dict(checkpoint["lr_scheduler_state_dict"])
# scaler.load_state_dict(checkpoint["scaler_state_dict"])
total_laion_token = checkpoint.get("total_laion_token", 0)
total_pile_token = checkpoint.get("total_pile_token", 0)
total_laion_sample = checkpoint.get("total_laion_sample", 0)
total_step = checkpoint.get("total_step", 0)
if args.rank == 0:
logging.info("load training statistics...")
else:
if args.rank == 0:
logging.info("restart training / finetuning. only load model weight...")
del checkpoint
if args.reset_llm:
del llm_state_dict
torch.cuda.empty_cache()
torch.distributed.barrier()
model.train()
if args.rank == 0:
if not os.path.exists(args.run_name):
os.makedirs(args.run_name)
writer = SummaryWriter(log_dir=os.path.join(args.run_name, "tblog"))
else:
writer = None
laion_dataset.set_epoch(total_step)
laion_loader = laion_dataset.dataloader
if pile_dataset is not None:
pile_dataset.set_epoch(total_step)
pile_loader = pile_dataset.dataloader
else:
pile_loader = FakeDataloader()
train_one_epoch(
args=args,
model=model,
tokenizer=tokenizer,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
laion_loader=laion_loader,
pile_loader=pile_loader,
device_id=device_id,
writer=writer,
scaler=scaler,
optim_groups=optim_groups,
total_laion_token=total_laion_token,
total_pile_token=total_pile_token,
total_laion_sample=total_laion_sample,
total_step=total_step,
)
if __name__ == "__main__":
main()
|