Spaces:
Runtime error
Runtime error
File size: 11,440 Bytes
0b7b08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
from transformers import AutoModelForCausalLM, AutoTokenizer
import open_clip
import torch
from .flamingo import Flamingo
from .flamingo_lm import FlamingoLMMixin
from .utils import extend_instance
import logging
import random
import time
def create_model_and_transforms(
clip_vision_encoder_path: str,
clip_vision_encoder_pretrained: str,
lang_encoder_path: str,
tokenizer_path: str,
use_local_files: bool = False,
decoder_layers_attr_name: str = None,
location_token_num: int = 1000,
checkpoint_activations: bool = False,
freeze_vision_encoder: bool = False,
lora: bool = False,
lora_r: int = 16,
fix_ffn: bool = False,
add_visual_token: bool = False,
add_box: bool = False,
add_pe: bool = False,
add_relation: bool = False,
use_format_v2: bool = False,
use_sam: str = None,
enhance_data: bool = False,
roi_align: bool = False,
roi_output_size: int = 4,
apply_mask: bool = False,
**flamingo_kwargs,
):
"""
Initialize a Flamingo model from a pretrained vision encoder and language encoder.
Appends special tokens to the tokenizer and freezes backbones.
Args:
clip_vision_encoder_path (str): path to pretrained clip model (e.g. "ViT-B-32")
clip_vision_encoder_pretrained (str): name of pretraining dataset for clip model (e.g. "laion2b_s32b_b79k")
lang_encoder_path (str): path to pretrained language encoder
tokenizer_path (str): path to pretrained tokenizer
cross_attn_every_n_layers (int, optional): determines how often to add a cross-attention layer. Defaults to 1.
use_local_files (bool, optional): whether to use local files. Defaults to False.
decoder_layers_attr_name (str, optional): name of the decoder layers attribute. Defaults to None.
Returns:
Flamingo: Flamingo model from pretrained vision and language encoders
Image processor: Pipeline to preprocess input images
Tokenizer: A tokenizer for the language model
"""
if use_sam is None:
no_success = True
while no_success:
try:
vision_encoder, _, image_processor = open_clip.create_model_and_transforms(
clip_vision_encoder_path, pretrained=clip_vision_encoder_pretrained
)
no_success = False
except:
logging.info("retry creating vision_encoder")
time.sleep(random.random() * 5)
# set the vision encoder to output the visual features
vision_encoder.visual.output_tokens = True
# delete text encoder part
del vision_encoder.transformer
del vision_encoder.text_projection
del vision_encoder.token_embedding
del vision_encoder.ln_final
del vision_encoder.positional_embedding
del vision_encoder.logit_scale
vision_encoder.visual.proj = None
vision_encoder.visual.ln_post = torch.nn.Identity()
else:
from segment_anything import SamPredictor, sam_model_registry
assert use_sam == "vit_l"
sam = sam_model_registry[use_sam](checkpoint="/gpfs/u/home/LMCG/LMCGljnn/scratch/code/checkpoint/sam_vit_l_0b3195_256x256.pth")
del sam.prompt_encoder
del sam.mask_decoder
sam.image_encoder.neck = torch.nn.Identity()
vision_encoder = sam.image_encoder
from open_clip.transform import image_transform
image_processor = image_transform(
256,
is_train=False,
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711),
)
text_tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path, local_files_only=use_local_files
)
# add Flamingo special tokens to the tokenizer
additional_special_tokens = ["<|#image#|>", "<|#endofimage#|>"]
if add_visual_token:
additional_special_tokens += ["<|#visual#|>", "<|#object#|>"]
if add_box:
additional_special_tokens += ["<|#box#|>", "<|#endofobject#|>", "<|#attr#|>", "<|#endofattr#|>"]
if use_format_v2:
additional_special_tokens += ["<|#previsual#|>", "<|#prebox#|>"]
if enhance_data:
additional_special_tokens += ["<|#NOTHING#|>"]
text_tokenizer.add_special_tokens(
{"additional_special_tokens": additional_special_tokens}
)
if text_tokenizer.pad_token is None:
# Issue: GPT models don't have a pad token, which we use to
# modify labels for the loss.
text_tokenizer.add_special_tokens({"pad_token": "<PAD>"})
lang_encoder = AutoModelForCausalLM.from_pretrained(
lang_encoder_path, local_files_only=use_local_files
)
extend_instance(lang_encoder, FlamingoLMMixin)
if decoder_layers_attr_name is None:
decoder_layers_attr_name = _infer_decoder_layers_attr_name(lang_encoder)
lang_encoder.set_decoder_layers_attr_name(decoder_layers_attr_name)
lang_encoder.resize_token_embeddings(len(text_tokenizer))
lang_encoder_name = lang_encoder.__class__.__name__.lower()
if checkpoint_activations:
from fairscale.nn.checkpoint import checkpoint_wrapper
if use_sam is None:
for i in range(len(vision_encoder.visual.transformer.resblocks)):
vision_encoder.visual.transformer.resblocks[i] = checkpoint_wrapper(
vision_encoder.visual.transformer.resblocks[i],
offload_to_cpu=False,
)
else:
for i in range(len(vision_encoder.blocks)):
vision_encoder.blocks[i] = checkpoint_wrapper(
vision_encoder.blocks[i],
offload_to_cpu=False,
)
if "opt" in lang_encoder_name:
for i in range(len(lang_encoder.model.decoder.layers)):
lang_encoder.model.decoder.layers[i] = checkpoint_wrapper(
lang_encoder.model.decoder.layers[i],
offload_to_cpu=False,
)
elif "codegen" in lang_encoder_name:
for i in range(len(lang_encoder.transformer.h)):
lang_encoder.transformer.h[i] = checkpoint_wrapper(
lang_encoder.transformer.h[i],
offload_to_cpu=False,
)
elif "llama" in lang_encoder_name:
for i in range(len(lang_encoder.model.layers)):
lang_encoder.model.layers[i] = checkpoint_wrapper(
lang_encoder.model.layers[i],
offload_to_cpu=False,
)
elif "gptneo" in lang_encoder_name:
for i in range(len(lang_encoder.gpt_neox.layers)):
lang_encoder.gpt_neox.layers[i] = checkpoint_wrapper(
lang_encoder.gpt_neox.layers[i],
offload_to_cpu=False,
)
else:
raise ValueError(f"unknown model {lang_encoder_name}")
if use_sam is None:
vis_dim = open_clip.get_model_config(clip_vision_encoder_path)["vision_cfg"]["width"]
image_size = open_clip.get_model_config(clip_vision_encoder_path)["vision_cfg"]["image_size"]
patch_size = open_clip.get_model_config(clip_vision_encoder_path)["vision_cfg"]["patch_size"]
else:
# SAM config
vis_dim = 1024
image_size = 256
patch_size = 16
assert image_size % patch_size == 0
vis_embed_size = (image_size // patch_size) ** 2
if lora:
from peft import LoraConfig, TaskType
from peft import get_peft_model
if "codegen" in lang_encoder_name:
lang_target_modules = ["qkv_proj", "out_proj", "fc_in", "fc_out"]
elif "opt" in lang_encoder_name:
lang_target_modules = ["k_proj", "v_proj", "q_proj", "out_proj"]
elif "llama" in lang_encoder_name:
lang_target_modules = ["k_proj", "v_proj", "q_proj", "o_proj", "gate_proj", "down_proj", "up_proj"]
else:
raise NotImplementedError
lang_peft_config = LoraConfig(
task_type="CAUSAL_LM",
r=16, lora_alpha=16,
target_modules=lang_target_modules,
lora_dropout=0.05, bias="none",
)
lang_encoder = get_peft_model(lang_encoder, lang_peft_config)
lang_encoder.print_trainable_parameters()
if fix_ffn:
if "opt" in lang_encoder_name:
for i in range(len(lang_encoder.model.decoder.layers)):
lang_encoder.model.decoder.layers[i].requires_grad_(False)
lang_encoder.model.decoder.layers[i].self_attn.requires_grad_(True)
else:
raise NotImplementedError
lang_dim = int(lang_encoder.config.hidden_size) if not lora else int(lang_encoder.base_model.model.config.hidden_size)
if hasattr(lang_encoder.config, "word_embed_proj_dim"):
hidden_state_dim = lang_encoder.config.word_embed_proj_dim
else:
hidden_state_dim = lang_encoder.config.hidden_size
model = Flamingo(
vision_encoder=vision_encoder,
lang_encoder=lang_encoder,
eoc_token_id=text_tokenizer.encode(text_tokenizer.eos_token)[-1],
media_token_id=text_tokenizer.encode("<|#image#|>")[-1],
image_end_token_id=text_tokenizer.encode("<|#endofimage#|>")[-1],
visual_token_id=text_tokenizer.encode("<|#visual#|>")[-1] if add_visual_token else None,
previsual_token_id=text_tokenizer.encode("<|#previsual#|>")[-1] if add_visual_token else None,
box_token_id=text_tokenizer.encode("<|#box#|>")[-1] if add_box else None,
prebox_token_id=text_tokenizer.encode("<|#prebox#|>")[-1] if add_box else None,
nothing_token_id=text_tokenizer.encode("<|#NOTHING#|>")[-1] if enhance_data else None,
endofobject_token_id=text_tokenizer.encode("<|#endofobject#|>")[-1],
vis_dim=vis_dim,
vis_embed_size=vis_embed_size,
lang_dim=lang_dim,
image_size=image_size,
patch_size=patch_size,
hidden_state_dim=hidden_state_dim,
add_visual_token=add_visual_token,
add_pe=add_pe,
add_relation=add_relation,
use_format_v2=use_format_v2,
roi_align=roi_align,
roi_output_size=roi_output_size,
apply_mask=apply_mask,
**flamingo_kwargs,
)
if freeze_vision_encoder:
print("freeze vision encoder")
model.vision_encoder.requires_grad_(False)
print(
f"Flamingo model initialized with {sum(p.numel() for p in model.parameters() if p.requires_grad)} trainable parameters"
)
return model, image_processor, text_tokenizer, vis_embed_size
def _infer_decoder_layers_attr_name(model):
for k in __KNOWN_DECODER_LAYERS_ATTR_NAMES:
if k.lower() in model.__class__.__name__.lower():
return __KNOWN_DECODER_LAYERS_ATTR_NAMES[k]
raise ValueError(
f"We require the attribute name for the nn.ModuleList in the decoder storing the transformer block layers. Please supply this string manually."
)
__KNOWN_DECODER_LAYERS_ATTR_NAMES = {
"opt": "model.decoder.layers",
# "gptneo": "transformer.h",
"gptj": "transformer.h",
"gpt-j": "transformer.h",
"pythia": "gpt_neox.layers",
"gptneox": "gpt_neox.layers",
"llama": "model.layers",
"llamaforcausallm": "model.layers",
"gpt2": "transformer.h",
"codegen": "transformer.h",
}
|