Spaces:
Runtime error
Runtime error
File size: 18,532 Bytes
0b7b08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
import time
from contextlib import suppress
import numpy as np
import torch
from tqdm import tqdm
import datetime
import os
import gc
from torch.distributed.fsdp import (
FullyShardedDataParallel as FSDP,
MixedPrecision,
BackwardPrefetch,
ShardingStrategy,
FullStateDictConfig,
StateDictType,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import (
transformer_auto_wrap_policy,
enable_wrap,
wrap,
)
from torch.utils.tensorboard import SummaryWriter
import logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s %(message)s',
datefmt='%m/%d %I:%M:%S',
)
def get_cast_dtype(precision: str):
cast_dtype = None
if precision == "bf16":
cast_dtype = torch.bfloat16
elif precision == "fp16":
cast_dtype = torch.float16
return cast_dtype
def get_autocast(precision):
if precision == "amp_fp16":
return lambda: torch.cuda.amp.autocast(dtype=torch.float16)
elif precision == "amp_bfloat16" or precision == "amp_bf16":
# amp_bfloat16 is more stable than amp float16 for clip training
return lambda: torch.cuda.amp.autocast(dtype=torch.bfloat16)
else:
return suppress
def get_sync(model, flag):
if flag:
return suppress
else:
return lambda: model.no_sync()
def train_one_epoch(
args,
model,
laion_loader,
pile_loader,
tokenizer,
optimizer,
lr_scheduler,
device_id,
writer: SummaryWriter,
optim_groups,
scaler,
total_laion_token: int,
total_pile_token: int,
total_laion_sample: int,
total_step: int,
):
world_size = torch.distributed.get_world_size()
autocast = get_autocast(args.precision)
cast_dtype = get_cast_dtype(args.precision)
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
if args.add_box:
box_token_id = tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1]
endofobject_token_id = tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1]
endofattr_token_id = tokenizer("<|#endofattr#|>", add_special_tokens=False)["input_ids"][-1]
if args.use_format_v2:
prebox_token_id = tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
if args.rank == 0:
logging.info(f"train from: {total_step} step")
model.train()
# loop through dataloader
last_logging_step = total_step
last_save_step = total_step
for num_steps, (batch_laion, batch_pile) in tqdm(
enumerate(zip(laion_loader, pile_loader)),
disable=args.rank != 0 or "SLURM_PROCID" in os.environ,
total=args.num_steps * args.gradient_accumulation_steps,
initial=total_step * args.gradient_accumulation_steps,
):
#### LAION FORWARD PASS ####
images = (
batch_laion[0]
.to(device_id, dtype=cast_dtype, non_blocking=True)
.unsqueeze(1)
.unsqueeze(1)
)
image_nums = batch_laion[1]
image_start_index_list = batch_laion[2]
# TODO: OPT model: input_ids is not started with </s> while input_ids2 is?
input_ids = batch_laion[3].to(device_id, non_blocking=True).long()
attention_mask = batch_laion[4].to(device_id, dtype=cast_dtype, non_blocking=True)
added_bbox_list = [x.to(device_id) for x in batch_laion[5]] # list object
total_laion_token += int(attention_mask.sum().long()) * world_size
total_laion_sample += sum(image_nums) * world_size
labels = input_ids.clone()
if args.add_box:
labels[input_ids == visual_token_id] = -100
labels[input_ids == box_token_id] = -100
labels[input_ids == endofattr_token_id] = -100
if args.use_format_v2:
labels[input_ids == previsual_token_id] = -100
labels[input_ids == prebox_token_id] = -100
labels[torch.roll(input_ids == prebox_token_id, 1)] = -100
labels[torch.roll(input_ids == box_token_id, 1)] = -100
labels[:, 0] = -100
labels[input_ids == tokenizer.pad_token_id] = -100
labels[input_ids == media_token_id] = -100
labels[input_ids == endofmedia_token_id] = -100
labels.to(device_id)
current_laion_num = input_ids.shape[0]
#### PILE FORWARD PASS ####
if batch_pile is not None and batch_pile[0] is not None and batch_pile[1] is not None:
input_ids2 = batch_pile[0].to(device_id, non_blocking=True).long()
attention_mask2 = batch_pile[1].to(device_id, dtype=cast_dtype, non_blocking=True)
input_length = input_ids.shape[-1]
input_ids2 = torch.cat([input_ids2, torch.ones((input_ids2.shape[0], input_length - input_ids2.shape[1]), device=input_ids2.device, dtype=input_ids2.dtype) * tokenizer.pad_token_id], dim=-1)
attention_mask2 = torch.cat([attention_mask2, torch.zeros((attention_mask2.shape[0], input_length - attention_mask2.shape[1]), device=attention_mask2.device, dtype=attention_mask2.dtype)], dim=-1)
labels2 = input_ids2.clone()
labels2[labels2 == tokenizer.pad_token_id] = -100
labels2[:, 0] = -100
labels2.to(device_id)
if (num_steps != 0 and num_steps % args.pile_freq == 0) or args.pile_freq == 1:
image_nums = image_nums + [0] * len(input_ids2)
image_start_index_list = image_start_index_list + [[]] * len(input_ids2)
input_ids = torch.cat([input_ids, input_ids2], dim=0)
attention_mask = torch.cat([attention_mask, attention_mask2], dim=0)
labels = torch.cat([labels, labels2], dim=0)
total_pile_token += int(attention_mask2.sum().long()) * world_size
else:
del input_ids2
del attention_mask2
del labels2
if args.instruct:
answer_token_id = tokenizer(" Answer").input_ids[0]
answer_token_loc = (input_ids == answer_token_id).nonzero()
for batch_idx, idx in answer_token_loc:
labels[batch_idx][:idx+2] = -100
if args.relation and not args.instruct:
relations = batch_laion[6]
else:
relations = None
if len(added_bbox_list) == 0:
added_bbox_list = None
update_flag = (num_steps != 0 and num_steps % args.gradient_accumulation_steps == 0) or args.gradient_accumulation_steps == 1
# do_sync = get_sync(model, update_flag)
with autocast():
# modify:
# /gpfs/u/home/LMCG/LMCGljnn/scratch/miniconda3-ppc64le/envs/unified/lib/python3.9/site-packages/transformers/models/codegen/modeling_codegen.py
# /gpfs/u/home/LMCG/LMCGljnn/scratch/miniconda3-ppc64le/envs/unified/lib/python3.9/site-packages/transformers/models/opt/modeling_opt.py
# CrossEntropyLoss(reduction="none")
outputs = model(
vision_x=images,
lang_x=input_ids,
attention_mask=attention_mask,
labels=labels,
image_nums=image_nums,
image_start_index_list=image_start_index_list,
added_bbox_list=added_bbox_list,
add_box=args.add_box,
relations=relations,
)
loss_total = outputs.loss.reshape(labels.shape[0], -1)
loss_sample = loss_total.sum(-1) / (loss_total != 0).sum(-1)
loss_sample_for_laion = loss_sample[:current_laion_num]
nan_mask = torch.isnan(loss_sample_for_laion)
if nan_mask.sum() > 0:
logging.warning(f"caption NaN: {nan_mask}")
if nan_mask.sum() == len(loss_sample_for_laion) or not model.valid:
logging.info("WARNING: skip this caption loss due to some error")
loss_laion = torch.tensor(0.0).cuda()
else:
loss_laion = loss_sample_for_laion[~nan_mask].mean()
loss_caption = loss_laion
divided_loss_laion = loss_laion / args.gradient_accumulation_steps
if current_laion_num != loss_sample.shape[0]:
loss_pile = loss_sample[current_laion_num:].mean()
else:
loss_pile = torch.tensor(0.0).cuda()
divided_loss_pile = loss_pile / args.gradient_accumulation_steps
if "detection_losses" in outputs:
loss_det = outputs["detection_losses"]["loss"]
loss_iou = outputs["detection_losses"]["loss_iou"]
loss_obj = outputs["detection_losses"]["loss_obj"]
loss_cls = outputs["detection_losses"]["loss_cls"]
else:
loss_det = torch.tensor(0.0).cuda()
loss_iou = torch.tensor(0.0).cuda()
loss_obj = torch.tensor(0.0).cuda()
loss_cls = torch.tensor(0.0).cuda()
if "loss_dict" in outputs:
visual_loss_iou = outputs["loss_dict"][0]["loss_iou"]
previsual_loss_iou = outputs["loss_dict"][1]["loss_iou"]
visual_loss_obj = outputs["loss_dict"][0]["loss_obj"]
previsual_loss_obj = outputs["loss_dict"][1]["loss_obj"]
else:
visual_loss_iou = torch.tensor(0.0).cuda()
previsual_loss_iou = torch.tensor(0.0).cuda()
visual_loss_obj = torch.tensor(0.0).cuda()
previsual_loss_obj = torch.tensor(0.0).cuda()
divided_loss_det = loss_det / args.gradient_accumulation_steps
loss_rel = outputs.get("rel_loss", torch.tensor(0.0).cuda())
divided_loss_rel = loss_rel / args.gradient_accumulation_steps
loss = (
divided_loss_laion * args.loss_multiplier_laion +
divided_loss_pile * args.loss_multiplier_pile +
divided_loss_det * args.loss_multiplier_det +
divided_loss_rel * args.loss_multiplier_rel
)
scaler.scale(loss).backward()
# for logging only
loss = (
loss_laion * args.loss_multiplier_laion
+ loss_pile * args.loss_multiplier_pile
+ loss_det * args.loss_multiplier_det
+ loss_rel * args.loss_multiplier_rel
).detach()
# step optimizer and log
if update_flag:
#### MASK GRADIENTS FOR EMBEDDINGS ####
# Note (anas): Do not apply weight decay to embeddings as it will break this function.
# ! not an important point
# if args.ddp:
# def mask_embedding(m):
# if isinstance(m, torch.nn.Embedding) and m.weight.requires_grad:
# zero_mask = torch.zeros_like(m.weight.grad)
# zero_mask[media_token_id] = torch.ones_like(zero_mask[media_token_id])
# zero_mask[endofmedia_token_id] = torch.ones_like(zero_mask[endofmedia_token_id])
# m.weight.grad = m.weight.grad * zero_mask
# model.apply(mask_embedding)
total_step += 1
scaler.unscale_(optimizer)
if args.ddp:
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
else:
model.clip_grad_norm_(1.0)
scaler.step(optimizer)
scaler.update()
lr_scheduler.step()
optimizer.zero_grad()
# https://github.com/facebookresearch/fairscale/issues/627
model.zero_grad(set_to_none=True)
if args.rank == 0 and total_step % args.logging_steps == 0 and total_step != last_logging_step:
last_logging_step = total_step
global_step = total_step
lr = optimizer.param_groups[0]["lr"]
writer.add_scalar("lr", lr, global_step)
writer.add_scalar("scale", scaler.get_scale(), global_step)
writer.add_scalar("loss_groundcaption", loss_laion.item(), global_step)
writer.add_scalar("loss_laion", loss_caption.item(), global_step)
writer.add_scalar("loss_pile", loss_pile.item(), global_step)
writer.add_scalar("loss", loss.item(), global_step)
writer.add_scalar("loss_det", loss_det.item(), global_step)
writer.add_scalar("loss_iou", loss_iou.item(), global_step)
writer.add_scalar("loss_obj", loss_obj.item(), global_step)
writer.add_scalar("loss_cls", loss_cls.item(), global_step)
if loss_rel.item() != 0:
writer.add_scalar("loss_rel", loss_rel.item(), global_step)
if args.use_format_v2:
writer.add_scalar("loss_iou_visual", visual_loss_iou.item(), global_step)
writer.add_scalar("loss_obj_visual", visual_loss_obj.item(), global_step)
writer.add_scalar("loss_iou_previsual", previsual_loss_iou.item(), global_step)
writer.add_scalar("loss_obj_previsual", previsual_loss_obj.item(), global_step)
global_sample_num = total_laion_sample
writer.add_scalar("loss_groundcaption_vs_sample_num", loss_laion.item(), global_sample_num)
writer.add_scalar("loss_laion_vs_sample_num", loss_caption.item(), global_sample_num)
writer.add_scalar("loss_pile_vs_sample_num", loss_pile.item(), global_sample_num)
writer.add_scalar("loss_vs_sample_num", loss.item(), global_sample_num)
writer.add_scalar("loss_det_vs_sample_num", loss_det.item(), global_sample_num)
writer.add_scalar("loss_iou_vs_sample_num", loss_iou.item(), global_sample_num)
writer.add_scalar("loss_obj_vs_sample_num", loss_obj.item(), global_sample_num)
if loss_rel.item() != 0:
writer.add_scalar("loss_rel_vs_sample_num", loss_rel.item(), global_sample_num)
writer.add_scalar("lr_vs_sample_num", optimizer.param_groups[0]["lr"], global_sample_num)
writer.add_scalar("loss_groundcaption_vs_token", loss_laion.item(), total_laion_token)
writer.add_scalar("loss_laion_vs_token", loss_caption.item(), total_laion_token)
writer.add_scalar("loss_pile_vs_token", loss_pile.item(), total_pile_token)
writer.add_scalar("loss_det_vs_token", loss_det.item(), total_laion_token)
writer.add_scalar("loss_iou_vs_token", loss_iou.item(), total_laion_token)
writer.add_scalar("loss_obj_vs_token", loss_obj.item(), total_laion_token)
writer.add_scalar("loss_cls_vs_token", loss_cls.item(), total_laion_token)
if loss_rel.item() != 0:
writer.add_scalar("loss_rel_vs_token", loss_rel.item(), total_laion_token)
total_token = total_laion_token + total_pile_token
writer.add_scalar("sample_num", global_sample_num, global_step)
writer.add_scalar("total_laion_token", total_laion_token, global_step)
writer.add_scalar("total_pile_token", total_pile_token, global_step)
writer.add_scalar("total_token", total_token, global_step)
logging.info(
f"[{global_step}][{total_laion_sample}][{total_token}]. total: {loss.item():.3f} // laion: {loss_caption.item():.3f} // pile: {loss_pile.item():.3f} // iou: {loss_iou.item():.4f} // obj: {loss_obj.item():.4f} // previsual_obj: {previsual_loss_obj.item():.4f} // visual_obj: {visual_loss_obj.item():.4f} // previsual_iou: {previsual_loss_iou.item():.4f} // visual_iou: {visual_loss_iou.item():.4f} // lr: {lr:.2e} // scale: {scaler.get_scale()}"
)
if total_step % args.save_interval == 0 and total_step != last_save_step:
last_save_step = total_step
torch.distributed.barrier()
if args.ddp:
cpu_state = model.state_dict()
# if args.rank == 0:
# optimizer_state = optimizer.state_dict()
else:
save_policy = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
with FSDP.state_dict_type(
model, StateDictType.FULL_STATE_DICT, save_policy
):
cpu_state = model.state_dict()
torch.distributed.barrier()
# https://pytorch.org/docs/1.12/fsdp.html
# need to pass optim_groups as optim_input
# optimizer_state = FSDP.full_optim_state_dict(model, optimizer, optim_input=optim_groups)
if args.rank == 0:
checkpoint_dict = {
"model_state_dict": cpu_state,
# "optimizer_state_dict": optimizer_state,
"lr_scheduler_state_dict": lr_scheduler.state_dict(),
"scaler_state_dict": scaler.state_dict(),
"total_pile_token": total_pile_token,
"total_laion_token": total_laion_token,
"total_laion_sample": total_laion_sample,
"total_step": total_step,
}
logging.info(f"Saving checkpoint to {args.run_name}/checkpoint_{total_step}.pt")
torch.save(checkpoint_dict, f"{args.run_name}/checkpoint_{total_step}.pt")
del checkpoint_dict
if args.delete_previous_checkpoint and total_step-args.save_interval > 0 and (total_step-args.save_interval) % args.skip_delete_pattern != 0:
try:
os.remove(f"{args.run_name}/checkpoint_{total_step-args.save_interval}.pt")
except:
pass
torch.distributed.barrier()
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
|