File size: 18,532 Bytes
0b7b08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import time
from contextlib import suppress
import numpy as np

import torch
from tqdm import tqdm
import datetime
import os
import gc
from torch.distributed.fsdp import (
    FullyShardedDataParallel as FSDP,
    MixedPrecision,
    BackwardPrefetch,
    ShardingStrategy,
    FullStateDictConfig,
    StateDictType,
)
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from torch.distributed.fsdp.wrap import (
    transformer_auto_wrap_policy,
    enable_wrap,
    wrap,
)

from torch.utils.tensorboard import SummaryWriter
import logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s %(message)s',
    datefmt='%m/%d %I:%M:%S',
)

def get_cast_dtype(precision: str):
    cast_dtype = None
    if precision == "bf16":
        cast_dtype = torch.bfloat16
    elif precision == "fp16":
        cast_dtype = torch.float16
    return cast_dtype


def get_autocast(precision):
    if precision == "amp_fp16":
        return lambda: torch.cuda.amp.autocast(dtype=torch.float16)
    elif precision == "amp_bfloat16" or precision == "amp_bf16":
        # amp_bfloat16 is more stable than amp float16 for clip training
        return lambda: torch.cuda.amp.autocast(dtype=torch.bfloat16)
    else:
        return suppress


def get_sync(model, flag):
    if flag:
        return suppress
    else:
        return lambda: model.no_sync()


def train_one_epoch(
    args,
    model,
    laion_loader,
    pile_loader,
    tokenizer,
    optimizer,
    lr_scheduler,
    device_id,
    writer: SummaryWriter,
    optim_groups,
    scaler,
    total_laion_token: int,
    total_pile_token: int,
    total_laion_sample: int,
    total_step: int,
):
    world_size = torch.distributed.get_world_size()
    autocast = get_autocast(args.precision)
    cast_dtype = get_cast_dtype(args.precision)

    media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
    endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
    visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
    if args.add_box:
        box_token_id = tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1]
        endofobject_token_id = tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1]
        endofattr_token_id = tokenizer("<|#endofattr#|>", add_special_tokens=False)["input_ids"][-1]
    if args.use_format_v2:
        prebox_token_id = tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
        previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
    if args.rank == 0:
        logging.info(f"train from: {total_step} step")
    model.train()
    # loop through dataloader
    last_logging_step = total_step
    last_save_step = total_step
    for num_steps, (batch_laion, batch_pile) in tqdm(
        enumerate(zip(laion_loader, pile_loader)),
        disable=args.rank != 0 or "SLURM_PROCID" in os.environ,
        total=args.num_steps * args.gradient_accumulation_steps,
        initial=total_step * args.gradient_accumulation_steps,
    ):
        #### LAION FORWARD PASS ####
        images = (
            batch_laion[0]
            .to(device_id, dtype=cast_dtype, non_blocking=True)
            .unsqueeze(1)
            .unsqueeze(1)
        )
        image_nums = batch_laion[1]
        image_start_index_list = batch_laion[2]

        # TODO: OPT model: input_ids is not started with </s> while input_ids2 is?
        input_ids = batch_laion[3].to(device_id, non_blocking=True).long()
        attention_mask = batch_laion[4].to(device_id, dtype=cast_dtype, non_blocking=True)
        added_bbox_list = [x.to(device_id) for x in batch_laion[5]] # list object
        total_laion_token += int(attention_mask.sum().long()) * world_size
        total_laion_sample += sum(image_nums) * world_size

        labels = input_ids.clone()
        if args.add_box:
            labels[input_ids == visual_token_id] = -100
            labels[input_ids == box_token_id] = -100
            labels[input_ids == endofattr_token_id] = -100
            if args.use_format_v2:
                labels[input_ids == previsual_token_id] = -100
                labels[input_ids == prebox_token_id] = -100
                labels[torch.roll(input_ids == prebox_token_id, 1)] = -100
                labels[torch.roll(input_ids == box_token_id, 1)] = -100
        labels[:, 0] = -100
        labels[input_ids == tokenizer.pad_token_id] = -100
        labels[input_ids == media_token_id] = -100
        labels[input_ids == endofmedia_token_id] = -100
        labels.to(device_id)
        current_laion_num = input_ids.shape[0]

        #### PILE FORWARD PASS ####
        if batch_pile is not None and batch_pile[0] is not None and batch_pile[1] is not None:
            input_ids2 = batch_pile[0].to(device_id, non_blocking=True).long()
            attention_mask2 = batch_pile[1].to(device_id, dtype=cast_dtype, non_blocking=True)
            input_length = input_ids.shape[-1]

            input_ids2 = torch.cat([input_ids2, torch.ones((input_ids2.shape[0], input_length - input_ids2.shape[1]), device=input_ids2.device, dtype=input_ids2.dtype) * tokenizer.pad_token_id], dim=-1)
            attention_mask2 = torch.cat([attention_mask2, torch.zeros((attention_mask2.shape[0], input_length - attention_mask2.shape[1]), device=attention_mask2.device, dtype=attention_mask2.dtype)], dim=-1)

            labels2 = input_ids2.clone()
            labels2[labels2 == tokenizer.pad_token_id] = -100
            labels2[:, 0] = -100
            labels2.to(device_id)

            if (num_steps != 0 and num_steps % args.pile_freq == 0) or args.pile_freq == 1:
                image_nums = image_nums + [0] * len(input_ids2)
                image_start_index_list = image_start_index_list + [[]] * len(input_ids2)
                input_ids = torch.cat([input_ids, input_ids2], dim=0)
                attention_mask = torch.cat([attention_mask, attention_mask2], dim=0)
                labels = torch.cat([labels, labels2], dim=0)
                total_pile_token += int(attention_mask2.sum().long()) * world_size
            else:
                del input_ids2
                del attention_mask2
                del labels2

        if args.instruct:
            answer_token_id = tokenizer(" Answer").input_ids[0]
            answer_token_loc = (input_ids == answer_token_id).nonzero()
            for batch_idx, idx in answer_token_loc:
                labels[batch_idx][:idx+2] = -100
        
        if args.relation and not args.instruct:
            relations = batch_laion[6]
        else:
            relations = None
        if len(added_bbox_list) == 0:
            added_bbox_list = None
        update_flag = (num_steps != 0 and num_steps % args.gradient_accumulation_steps == 0) or args.gradient_accumulation_steps == 1
        # do_sync = get_sync(model, update_flag)
        with autocast():
            # modify: 
            #   /gpfs/u/home/LMCG/LMCGljnn/scratch/miniconda3-ppc64le/envs/unified/lib/python3.9/site-packages/transformers/models/codegen/modeling_codegen.py
            #   /gpfs/u/home/LMCG/LMCGljnn/scratch/miniconda3-ppc64le/envs/unified/lib/python3.9/site-packages/transformers/models/opt/modeling_opt.py
            # CrossEntropyLoss(reduction="none")
            outputs = model(
                vision_x=images,
                lang_x=input_ids,
                attention_mask=attention_mask,
                labels=labels,
                image_nums=image_nums,
                image_start_index_list=image_start_index_list,
                added_bbox_list=added_bbox_list,
                add_box=args.add_box,
                relations=relations,
            )
            loss_total = outputs.loss.reshape(labels.shape[0], -1)
            loss_sample = loss_total.sum(-1) / (loss_total != 0).sum(-1)
            loss_sample_for_laion = loss_sample[:current_laion_num]
            nan_mask = torch.isnan(loss_sample_for_laion)
            if nan_mask.sum() > 0:
                logging.warning(f"caption NaN: {nan_mask}")
            if nan_mask.sum() == len(loss_sample_for_laion) or not model.valid:
                logging.info("WARNING: skip this caption loss due to some error")
                loss_laion = torch.tensor(0.0).cuda()
            else:
                loss_laion = loss_sample_for_laion[~nan_mask].mean()
            loss_caption = loss_laion
            divided_loss_laion = loss_laion / args.gradient_accumulation_steps
            if current_laion_num != loss_sample.shape[0]:
                loss_pile = loss_sample[current_laion_num:].mean()
            else:
                loss_pile = torch.tensor(0.0).cuda()
            divided_loss_pile = loss_pile / args.gradient_accumulation_steps

            if "detection_losses" in outputs:
                loss_det = outputs["detection_losses"]["loss"]
                loss_iou = outputs["detection_losses"]["loss_iou"]
                loss_obj = outputs["detection_losses"]["loss_obj"]
                loss_cls = outputs["detection_losses"]["loss_cls"]
            else:
                loss_det = torch.tensor(0.0).cuda()
                loss_iou = torch.tensor(0.0).cuda()
                loss_obj = torch.tensor(0.0).cuda()
                loss_cls = torch.tensor(0.0).cuda()

            if "loss_dict" in outputs:
                visual_loss_iou = outputs["loss_dict"][0]["loss_iou"]
                previsual_loss_iou = outputs["loss_dict"][1]["loss_iou"]
                visual_loss_obj = outputs["loss_dict"][0]["loss_obj"]
                previsual_loss_obj = outputs["loss_dict"][1]["loss_obj"]
            else:
                visual_loss_iou = torch.tensor(0.0).cuda()
                previsual_loss_iou = torch.tensor(0.0).cuda()
                visual_loss_obj = torch.tensor(0.0).cuda()
                previsual_loss_obj = torch.tensor(0.0).cuda()

            divided_loss_det = loss_det / args.gradient_accumulation_steps
            loss_rel = outputs.get("rel_loss", torch.tensor(0.0).cuda())
            divided_loss_rel = loss_rel / args.gradient_accumulation_steps
            loss = (
                divided_loss_laion * args.loss_multiplier_laion +
                divided_loss_pile * args.loss_multiplier_pile +
                divided_loss_det * args.loss_multiplier_det +
                divided_loss_rel * args.loss_multiplier_rel
            )

        scaler.scale(loss).backward()

        # for logging only
        loss = (
            loss_laion * args.loss_multiplier_laion
            + loss_pile * args.loss_multiplier_pile
            + loss_det * args.loss_multiplier_det
            + loss_rel * args.loss_multiplier_rel
        ).detach()

        # step optimizer and log
        if update_flag:
            #### MASK GRADIENTS FOR EMBEDDINGS ####
            # Note (anas): Do not apply weight decay to embeddings as it will break this function.
            # ! not an important point
            # if args.ddp:
            #     def mask_embedding(m):
            #         if isinstance(m, torch.nn.Embedding) and m.weight.requires_grad:
            #             zero_mask = torch.zeros_like(m.weight.grad)
            #             zero_mask[media_token_id] = torch.ones_like(zero_mask[media_token_id])
            #             zero_mask[endofmedia_token_id] = torch.ones_like(zero_mask[endofmedia_token_id])
            #             m.weight.grad = m.weight.grad * zero_mask
            #     model.apply(mask_embedding)
            total_step += 1
            scaler.unscale_(optimizer)
            if args.ddp:
                torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
            else:
                model.clip_grad_norm_(1.0)
            scaler.step(optimizer)
            scaler.update()
            lr_scheduler.step()
            optimizer.zero_grad()
            # https://github.com/facebookresearch/fairscale/issues/627
            model.zero_grad(set_to_none=True)

        if args.rank == 0 and total_step % args.logging_steps == 0 and total_step != last_logging_step:
            last_logging_step = total_step
            global_step = total_step
            lr = optimizer.param_groups[0]["lr"]
            writer.add_scalar("lr", lr, global_step)
            writer.add_scalar("scale", scaler.get_scale(), global_step)
            writer.add_scalar("loss_groundcaption", loss_laion.item(), global_step)
            writer.add_scalar("loss_laion", loss_caption.item(), global_step)
            writer.add_scalar("loss_pile", loss_pile.item(), global_step)
            writer.add_scalar("loss", loss.item(), global_step)
            writer.add_scalar("loss_det", loss_det.item(), global_step)
            writer.add_scalar("loss_iou", loss_iou.item(), global_step)
            writer.add_scalar("loss_obj", loss_obj.item(), global_step)
            writer.add_scalar("loss_cls", loss_cls.item(), global_step)
            if loss_rel.item() != 0:
                writer.add_scalar("loss_rel", loss_rel.item(), global_step)
            if args.use_format_v2:
                writer.add_scalar("loss_iou_visual", visual_loss_iou.item(), global_step)
                writer.add_scalar("loss_obj_visual", visual_loss_obj.item(), global_step)
                writer.add_scalar("loss_iou_previsual", previsual_loss_iou.item(), global_step)
                writer.add_scalar("loss_obj_previsual", previsual_loss_obj.item(), global_step)

            global_sample_num = total_laion_sample
            writer.add_scalar("loss_groundcaption_vs_sample_num", loss_laion.item(), global_sample_num)
            writer.add_scalar("loss_laion_vs_sample_num", loss_caption.item(), global_sample_num)
            writer.add_scalar("loss_pile_vs_sample_num", loss_pile.item(), global_sample_num)
            writer.add_scalar("loss_vs_sample_num", loss.item(), global_sample_num)
            writer.add_scalar("loss_det_vs_sample_num", loss_det.item(), global_sample_num)
            writer.add_scalar("loss_iou_vs_sample_num", loss_iou.item(), global_sample_num)
            writer.add_scalar("loss_obj_vs_sample_num", loss_obj.item(), global_sample_num)
            if loss_rel.item() != 0:
                writer.add_scalar("loss_rel_vs_sample_num", loss_rel.item(), global_sample_num)
            writer.add_scalar("lr_vs_sample_num", optimizer.param_groups[0]["lr"], global_sample_num)

            writer.add_scalar("loss_groundcaption_vs_token", loss_laion.item(), total_laion_token)
            writer.add_scalar("loss_laion_vs_token", loss_caption.item(), total_laion_token)
            writer.add_scalar("loss_pile_vs_token", loss_pile.item(), total_pile_token)
            writer.add_scalar("loss_det_vs_token", loss_det.item(), total_laion_token)
            writer.add_scalar("loss_iou_vs_token", loss_iou.item(), total_laion_token)
            writer.add_scalar("loss_obj_vs_token", loss_obj.item(), total_laion_token)
            writer.add_scalar("loss_cls_vs_token", loss_cls.item(), total_laion_token)
            if loss_rel.item() != 0:
                writer.add_scalar("loss_rel_vs_token", loss_rel.item(), total_laion_token)

            total_token = total_laion_token + total_pile_token
            writer.add_scalar("sample_num", global_sample_num, global_step)
            writer.add_scalar("total_laion_token", total_laion_token, global_step)
            writer.add_scalar("total_pile_token", total_pile_token, global_step)
            writer.add_scalar("total_token", total_token, global_step)
            logging.info(
                f"[{global_step}][{total_laion_sample}][{total_token}]. total: {loss.item():.3f} //  laion: {loss_caption.item():.3f} // pile: {loss_pile.item():.3f} // iou: {loss_iou.item():.4f} // obj: {loss_obj.item():.4f} // previsual_obj: {previsual_loss_obj.item():.4f} // visual_obj: {visual_loss_obj.item():.4f} // previsual_iou: {previsual_loss_iou.item():.4f} // visual_iou: {visual_loss_iou.item():.4f} // lr: {lr:.2e} // scale: {scaler.get_scale()}"
            )

        if total_step % args.save_interval == 0 and total_step != last_save_step:
            last_save_step = total_step
            torch.distributed.barrier()
            if args.ddp:
                cpu_state = model.state_dict()
                # if args.rank == 0:
                #     optimizer_state = optimizer.state_dict()
            else:
                save_policy = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
                with FSDP.state_dict_type(
                    model, StateDictType.FULL_STATE_DICT, save_policy
                ):
                    cpu_state = model.state_dict()
                torch.distributed.barrier()
                # https://pytorch.org/docs/1.12/fsdp.html
                # need to pass optim_groups as optim_input
                # optimizer_state = FSDP.full_optim_state_dict(model, optimizer, optim_input=optim_groups)
            if args.rank == 0:
                checkpoint_dict = {
                    "model_state_dict": cpu_state,
                    # "optimizer_state_dict": optimizer_state,
                    "lr_scheduler_state_dict": lr_scheduler.state_dict(),
                    "scaler_state_dict": scaler.state_dict(),
                    "total_pile_token": total_pile_token,
                    "total_laion_token": total_laion_token,
                    "total_laion_sample": total_laion_sample,
                    "total_step": total_step,
                }
                logging.info(f"Saving checkpoint to {args.run_name}/checkpoint_{total_step}.pt")
                torch.save(checkpoint_dict, f"{args.run_name}/checkpoint_{total_step}.pt")
                del checkpoint_dict
                if args.delete_previous_checkpoint and total_step-args.save_interval > 0 and (total_step-args.save_interval) % args.skip_delete_pattern != 0:
                    try:
                        os.remove(f"{args.run_name}/checkpoint_{total_step-args.save_interval}.pt")
                    except:
                        pass
            torch.distributed.barrier()


class AverageMeter(object):
    """Computes and stores the average and current value"""

    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count