Spaces:
Runtime error
Runtime error
File size: 11,060 Bytes
a1d409e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from pathlib import Path
import numpy as np
import pytest
from pack_dataset import pack_data_dir
from parameterized import parameterized
from save_len_file import save_len_file
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from transformers.models.mbart.modeling_mbart import shift_tokens_right
from transformers.testing_utils import TestCasePlus, slow
from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeq2SeqDataset, Seq2SeqDataset
BERT_BASE_CASED = "bert-base-cased"
PEGASUS_XSUM = "google/pegasus-xsum"
ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."]
SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
T5_TINY = "patrickvonplaten/t5-tiny-random"
BART_TINY = "sshleifer/bart-tiny-random"
MBART_TINY = "sshleifer/tiny-mbart"
MARIAN_TINY = "sshleifer/tiny-marian-en-de"
def _dump_articles(path: Path, articles: list):
content = "\n".join(articles)
Path(path).open("w").writelines(content)
def make_test_data_dir(tmp_dir):
for split in ["train", "val", "test"]:
_dump_articles(os.path.join(tmp_dir, f"{split}.source"), ARTICLES)
_dump_articles(os.path.join(tmp_dir, f"{split}.target"), SUMMARIES)
return tmp_dir
class TestAll(TestCasePlus):
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
],
)
@slow
def test_seq2seq_dataset_truncation(self, tok_name):
tokenizer = AutoTokenizer.from_pretrained(tok_name)
tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())
max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES)
max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES)
max_src_len = 4
max_tgt_len = 8
assert max_len_target > max_src_len # Will be truncated
assert max_len_source > max_src_len # Will be truncated
src_lang, tgt_lang = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error.
train_dataset = Seq2SeqDataset(
tokenizer,
data_dir=tmp_dir,
type_path="train",
max_source_length=max_src_len,
max_target_length=max_tgt_len, # ignored
src_lang=src_lang,
tgt_lang=tgt_lang,
)
dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
for batch in dataloader:
assert isinstance(batch, dict)
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_src_len
# show that targets are the same len
assert batch["labels"].shape[1] == max_tgt_len
if tok_name != MBART_TINY:
continue
# check language codes in correct place
batch["decoder_input_ids"] = shift_tokens_right(batch["labels"], tokenizer.pad_token_id)
assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]
break # No need to test every batch
@parameterized.expand([BART_TINY, BERT_BASE_CASED])
def test_legacy_dataset_truncation(self, tok):
tokenizer = AutoTokenizer.from_pretrained(tok)
tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())
max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES)
max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES)
trunc_target = 4
train_dataset = LegacySeq2SeqDataset(
tokenizer,
data_dir=tmp_dir,
type_path="train",
max_source_length=20,
max_target_length=trunc_target,
)
dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
for batch in dataloader:
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_len_source
assert 20 >= batch["input_ids"].shape[1] # trimmed significantly
# show that targets were truncated
assert batch["labels"].shape[1] == trunc_target # Truncated
assert max_len_target > trunc_target # Truncated
break # No need to test every batch
def test_pack_dataset(self):
tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
tmp_dir = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()))
orig_examples = tmp_dir.joinpath("train.source").open().readlines()
save_dir = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()))
pack_data_dir(tokenizer, tmp_dir, 128, save_dir)
orig_paths = {x.name for x in tmp_dir.iterdir()}
new_paths = {x.name for x in save_dir.iterdir()}
packed_examples = save_dir.joinpath("train.source").open().readlines()
# orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
# desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
assert len(packed_examples) < len(orig_examples)
assert len(packed_examples) == 1
assert len(packed_examples[0]) == sum(len(x) for x in orig_examples)
assert orig_paths == new_paths
@pytest.mark.skipif(not FAIRSEQ_AVAILABLE, reason="This test requires fairseq")
def test_dynamic_batch_size(self):
if not FAIRSEQ_AVAILABLE:
return
ds, max_tokens, tokenizer = self._get_dataset(max_len=64)
required_batch_size_multiple = 64
batch_sampler = ds.make_dynamic_sampler(max_tokens, required_batch_size_multiple=required_batch_size_multiple)
batch_sizes = [len(x) for x in batch_sampler]
assert len(set(batch_sizes)) > 1 # it's not dynamic batch size if every batch is the same length
assert sum(batch_sizes) == len(ds) # no dropped or added examples
data_loader = DataLoader(ds, batch_sampler=batch_sampler, collate_fn=ds.collate_fn, num_workers=2)
failures = []
num_src_per_batch = []
for batch in data_loader:
src_shape = batch["input_ids"].shape
bs = src_shape[0]
assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple
num_src_tokens = np.product(batch["input_ids"].shape)
num_src_per_batch.append(num_src_tokens)
if num_src_tokens > (max_tokens * 1.1):
failures.append(num_src_tokens)
assert num_src_per_batch[0] == max(num_src_per_batch)
if failures:
raise AssertionError(f"too many tokens in {len(failures)} batches")
def test_sortish_sampler_reduces_padding(self):
ds, _, tokenizer = self._get_dataset(max_len=512)
bs = 2
sortish_sampler = ds.make_sortish_sampler(bs, shuffle=False)
naive_dl = DataLoader(ds, batch_size=bs, collate_fn=ds.collate_fn, num_workers=2)
sortish_dl = DataLoader(ds, batch_size=bs, collate_fn=ds.collate_fn, num_workers=2, sampler=sortish_sampler)
pad = tokenizer.pad_token_id
def count_pad_tokens(data_loader, k="input_ids"):
return [batch[k].eq(pad).sum().item() for batch in data_loader]
assert sum(count_pad_tokens(sortish_dl, k="labels")) < sum(count_pad_tokens(naive_dl, k="labels"))
assert sum(count_pad_tokens(sortish_dl)) < sum(count_pad_tokens(naive_dl))
assert len(sortish_dl) == len(naive_dl)
def _get_dataset(self, n_obs=1000, max_len=128):
if os.getenv("USE_REAL_DATA", False):
data_dir = "examples/seq2seq/wmt_en_ro"
max_tokens = max_len * 2 * 64
if not Path(data_dir).joinpath("train.len").exists():
save_len_file(MARIAN_TINY, data_dir)
else:
data_dir = "examples/seq2seq/test_data/wmt_en_ro"
max_tokens = max_len * 4
save_len_file(MARIAN_TINY, data_dir)
tokenizer = AutoTokenizer.from_pretrained(MARIAN_TINY)
ds = Seq2SeqDataset(
tokenizer,
data_dir=data_dir,
type_path="train",
max_source_length=max_len,
max_target_length=max_len,
n_obs=n_obs,
)
return ds, max_tokens, tokenizer
def test_distributed_sortish_sampler_splits_indices_between_procs(self):
ds, max_tokens, tokenizer = self._get_dataset()
ids1 = set(DistributedSortishSampler(ds, 256, num_replicas=2, rank=0, add_extra_examples=False))
ids2 = set(DistributedSortishSampler(ds, 256, num_replicas=2, rank=1, add_extra_examples=False))
assert ids1.intersection(ids2) == set()
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
],
)
def test_dataset_kwargs(self, tok_name):
tokenizer = AutoTokenizer.from_pretrained(tok_name, use_fast=False)
if tok_name == MBART_TINY:
train_dataset = Seq2SeqDataset(
tokenizer,
data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()),
type_path="train",
max_source_length=4,
max_target_length=8,
src_lang="EN",
tgt_lang="FR",
)
kwargs = train_dataset.dataset_kwargs
assert "src_lang" in kwargs and "tgt_lang" in kwargs
else:
train_dataset = Seq2SeqDataset(
tokenizer,
data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()),
type_path="train",
max_source_length=4,
max_target_length=8,
)
kwargs = train_dataset.dataset_kwargs
assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs
assert len(kwargs) == 1 if tok_name == BART_TINY else len(kwargs) == 0
|