File size: 11,060 Bytes
a1d409e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from pathlib import Path

import numpy as np
import pytest
from pack_dataset import pack_data_dir
from parameterized import parameterized
from save_len_file import save_len_file
from torch.utils.data import DataLoader

from transformers import AutoTokenizer
from transformers.models.mbart.modeling_mbart import shift_tokens_right
from transformers.testing_utils import TestCasePlus, slow
from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeq2SeqDataset, Seq2SeqDataset


BERT_BASE_CASED = "bert-base-cased"
PEGASUS_XSUM = "google/pegasus-xsum"
ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."]
SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
T5_TINY = "patrickvonplaten/t5-tiny-random"
BART_TINY = "sshleifer/bart-tiny-random"
MBART_TINY = "sshleifer/tiny-mbart"
MARIAN_TINY = "sshleifer/tiny-marian-en-de"


def _dump_articles(path: Path, articles: list):
    content = "\n".join(articles)
    Path(path).open("w").writelines(content)


def make_test_data_dir(tmp_dir):
    for split in ["train", "val", "test"]:
        _dump_articles(os.path.join(tmp_dir, f"{split}.source"), ARTICLES)
        _dump_articles(os.path.join(tmp_dir, f"{split}.target"), SUMMARIES)
    return tmp_dir


class TestAll(TestCasePlus):
    @parameterized.expand(
        [
            MBART_TINY,
            MARIAN_TINY,
            T5_TINY,
            BART_TINY,
            PEGASUS_XSUM,
        ],
    )
    @slow
    def test_seq2seq_dataset_truncation(self, tok_name):
        tokenizer = AutoTokenizer.from_pretrained(tok_name)
        tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())
        max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES)
        max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES)
        max_src_len = 4
        max_tgt_len = 8
        assert max_len_target > max_src_len  # Will be truncated
        assert max_len_source > max_src_len  # Will be truncated
        src_lang, tgt_lang = "ro_RO", "de_DE"  # ignored for all but mbart, but never causes error.
        train_dataset = Seq2SeqDataset(
            tokenizer,
            data_dir=tmp_dir,
            type_path="train",
            max_source_length=max_src_len,
            max_target_length=max_tgt_len,  # ignored
            src_lang=src_lang,
            tgt_lang=tgt_lang,
        )
        dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
        for batch in dataloader:
            assert isinstance(batch, dict)
            assert batch["attention_mask"].shape == batch["input_ids"].shape
            # show that articles were trimmed.
            assert batch["input_ids"].shape[1] == max_src_len
            # show that targets are the same len
            assert batch["labels"].shape[1] == max_tgt_len
            if tok_name != MBART_TINY:
                continue
            # check language codes in correct place
            batch["decoder_input_ids"] = shift_tokens_right(batch["labels"], tokenizer.pad_token_id)
            assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
            assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
            assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
            assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]

            break  # No need to test every batch

    @parameterized.expand([BART_TINY, BERT_BASE_CASED])
    def test_legacy_dataset_truncation(self, tok):
        tokenizer = AutoTokenizer.from_pretrained(tok)
        tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())
        max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES)
        max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES)
        trunc_target = 4
        train_dataset = LegacySeq2SeqDataset(
            tokenizer,
            data_dir=tmp_dir,
            type_path="train",
            max_source_length=20,
            max_target_length=trunc_target,
        )
        dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
        for batch in dataloader:
            assert batch["attention_mask"].shape == batch["input_ids"].shape
            # show that articles were trimmed.
            assert batch["input_ids"].shape[1] == max_len_source
            assert 20 >= batch["input_ids"].shape[1]  # trimmed significantly
            # show that targets were truncated
            assert batch["labels"].shape[1] == trunc_target  # Truncated
            assert max_len_target > trunc_target  # Truncated
            break  # No need to test every batch

    def test_pack_dataset(self):
        tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")

        tmp_dir = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()))
        orig_examples = tmp_dir.joinpath("train.source").open().readlines()
        save_dir = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()))
        pack_data_dir(tokenizer, tmp_dir, 128, save_dir)
        orig_paths = {x.name for x in tmp_dir.iterdir()}
        new_paths = {x.name for x in save_dir.iterdir()}
        packed_examples = save_dir.joinpath("train.source").open().readlines()
        # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
        # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
        assert len(packed_examples) < len(orig_examples)
        assert len(packed_examples) == 1
        assert len(packed_examples[0]) == sum(len(x) for x in orig_examples)
        assert orig_paths == new_paths

    @pytest.mark.skipif(not FAIRSEQ_AVAILABLE, reason="This test requires fairseq")
    def test_dynamic_batch_size(self):
        if not FAIRSEQ_AVAILABLE:
            return
        ds, max_tokens, tokenizer = self._get_dataset(max_len=64)
        required_batch_size_multiple = 64
        batch_sampler = ds.make_dynamic_sampler(max_tokens, required_batch_size_multiple=required_batch_size_multiple)
        batch_sizes = [len(x) for x in batch_sampler]
        assert len(set(batch_sizes)) > 1  # it's not dynamic batch size if every batch is the same length
        assert sum(batch_sizes) == len(ds)  # no dropped or added examples
        data_loader = DataLoader(ds, batch_sampler=batch_sampler, collate_fn=ds.collate_fn, num_workers=2)
        failures = []
        num_src_per_batch = []
        for batch in data_loader:
            src_shape = batch["input_ids"].shape
            bs = src_shape[0]
            assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple
            num_src_tokens = np.product(batch["input_ids"].shape)
            num_src_per_batch.append(num_src_tokens)
            if num_src_tokens > (max_tokens * 1.1):
                failures.append(num_src_tokens)
        assert num_src_per_batch[0] == max(num_src_per_batch)
        if failures:
            raise AssertionError(f"too many tokens in {len(failures)} batches")

    def test_sortish_sampler_reduces_padding(self):
        ds, _, tokenizer = self._get_dataset(max_len=512)
        bs = 2
        sortish_sampler = ds.make_sortish_sampler(bs, shuffle=False)

        naive_dl = DataLoader(ds, batch_size=bs, collate_fn=ds.collate_fn, num_workers=2)
        sortish_dl = DataLoader(ds, batch_size=bs, collate_fn=ds.collate_fn, num_workers=2, sampler=sortish_sampler)

        pad = tokenizer.pad_token_id

        def count_pad_tokens(data_loader, k="input_ids"):
            return [batch[k].eq(pad).sum().item() for batch in data_loader]

        assert sum(count_pad_tokens(sortish_dl, k="labels")) < sum(count_pad_tokens(naive_dl, k="labels"))
        assert sum(count_pad_tokens(sortish_dl)) < sum(count_pad_tokens(naive_dl))
        assert len(sortish_dl) == len(naive_dl)

    def _get_dataset(self, n_obs=1000, max_len=128):
        if os.getenv("USE_REAL_DATA", False):
            data_dir = "examples/seq2seq/wmt_en_ro"
            max_tokens = max_len * 2 * 64
            if not Path(data_dir).joinpath("train.len").exists():
                save_len_file(MARIAN_TINY, data_dir)
        else:
            data_dir = "examples/seq2seq/test_data/wmt_en_ro"
            max_tokens = max_len * 4
            save_len_file(MARIAN_TINY, data_dir)

        tokenizer = AutoTokenizer.from_pretrained(MARIAN_TINY)
        ds = Seq2SeqDataset(
            tokenizer,
            data_dir=data_dir,
            type_path="train",
            max_source_length=max_len,
            max_target_length=max_len,
            n_obs=n_obs,
        )
        return ds, max_tokens, tokenizer

    def test_distributed_sortish_sampler_splits_indices_between_procs(self):
        ds, max_tokens, tokenizer = self._get_dataset()
        ids1 = set(DistributedSortishSampler(ds, 256, num_replicas=2, rank=0, add_extra_examples=False))
        ids2 = set(DistributedSortishSampler(ds, 256, num_replicas=2, rank=1, add_extra_examples=False))
        assert ids1.intersection(ids2) == set()

    @parameterized.expand(
        [
            MBART_TINY,
            MARIAN_TINY,
            T5_TINY,
            BART_TINY,
            PEGASUS_XSUM,
        ],
    )
    def test_dataset_kwargs(self, tok_name):
        tokenizer = AutoTokenizer.from_pretrained(tok_name, use_fast=False)
        if tok_name == MBART_TINY:
            train_dataset = Seq2SeqDataset(
                tokenizer,
                data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()),
                type_path="train",
                max_source_length=4,
                max_target_length=8,
                src_lang="EN",
                tgt_lang="FR",
            )
            kwargs = train_dataset.dataset_kwargs
            assert "src_lang" in kwargs and "tgt_lang" in kwargs
        else:
            train_dataset = Seq2SeqDataset(
                tokenizer,
                data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()),
                type_path="train",
                max_source_length=4,
                max_target_length=8,
            )
            kwargs = train_dataset.dataset_kwargs
            assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs
            assert len(kwargs) == 1 if tok_name == BART_TINY else len(kwargs) == 0