File size: 22,116 Bytes
fdffde6
 
 
 
 
 
844a1e9
fdffde6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e82e643
 
 
 
 
 
fdffde6
 
 
 
 
 
 
 
 
 
 
020e358
 
 
 
 
 
 
 
 
86468ab
020e358
 
 
 
 
 
 
 
 
 
 
fdffde6
 
 
 
 
 
020e358
fdffde6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
020e358
 
 
 
 
 
 
 
fdffde6
 
 
 
 
 
 
 
8f10f7b
098738d
fdffde6
8f10f7b
 
e82e643
fdffde6
 
8f10f7b
 
fdffde6
 
020e358
 
 
 
 
 
 
 
fdffde6
86468ab
020e358
 
 
 
 
 
 
fdffde6
 
 
 
 
 
 
 
 
 
 
 
 
f22f2c6
 
fdffde6
 
 
 
 
 
674dd26
 
fdffde6
 
 
7f11231
 
 
 
 
 
 
 
 
 
 
 
 
 
098738d
 
7f11231
 
 
fdffde6
 
1fb7e67
 
 
fdffde6
e82e643
 
 
 
 
 
 
 
3553543
e82e643
 
 
 
 
 
 
 
fdffde6
e82e643
 
 
 
 
 
7f11231
86468ab
 
e82e643
fdffde6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8772aa
fdffde6
 
 
 
e511b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
fdffde6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
674dd26
fdffde6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
import argparse
import time
from PIL import Image

import torch
import numpy as np
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
from transformers import StoppingCriteria, StoppingCriteriaList

import dataclasses
from enum import auto, Enum
from typing import List, Tuple, Any

import string
import cv2
import gradio as gr

from huggingface_hub import hf_hub_download, login

from open_flamingo.src.factory import create_model_and_transforms

class SeparatorStyle(Enum):
    """Different separator style."""
    SINGLE = auto()
    TWO = auto()


@dataclasses.dataclass
class Conversation:
    """A class that keeps all conversation history."""
    system: str
    roles: List[str]
    messages: List[List[str]]
    offset: int
    # system_img: List[Image.Image] = []
    sep_style: SeparatorStyle = SeparatorStyle.SINGLE
    sep: str = "###"
    sep2: str = None

    skip_next: bool = False
    conv_id: Any = None

    def get_prompt(self):
        if self.sep_style == SeparatorStyle.SINGLE:
            ret = self.system + self.sep
            for role, message in self.messages:
                if message:
                    ret += role + ": " + message + self.sep
                else:
                    ret += role + ":"
            return ret
        elif self.sep_style == SeparatorStyle.TWO:
            seps = [self.sep, self.sep2]
            ret = self.system + seps[0]
            for i, (role, message) in enumerate(self.messages):
                if message:
                    ret += role + ": " + message + seps[i % 2]
                else:
                    ret += role + ":"
            return ret
        else:
            raise ValueError(f"Invalid style: {self.sep_style}")

    def append_message(self, role, message):
        self.messages.append([role, message])

    def to_gradio_chatbot(self):
        ret = []
        for i, (role, msg) in enumerate(self.messages[self.offset:]):
            if i % 2 == 0:
                ret.append([msg, None])
            else:
                ret[-1][-1] = msg
        return ret

    def copy(self):
        return Conversation(
            system=self.system,
            # system_img=self.system_img,
            roles=self.roles,
            messages=[[x, y] for x, y in self.messages],
            offset=self.offset,
            sep_style=self.sep_style,
            sep=self.sep,
            sep2=self.sep2,
            conv_id=self.conv_id)

    def dict(self):
        return {
            "system": self.system,
            # "system_img": self.system_img,
            "roles": self.roles,
            "messages": self.messages,
            "offset": self.offset,
            "sep": self.sep,
            "sep2": self.sep2,
            "conv_id": self.conv_id,
        }


class StoppingCriteriaSub(StoppingCriteria):

    def __init__(self, stops=[], encounters=1):
        super().__init__()
        self.stops = stops

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
        for stop in self.stops:
            if torch.all((stop == input_ids[0][-len(stop):])).item():
                return True

        return False


CONV_VISION = Conversation(
    system="Give the following image: <Img>ImageContent</Img>. "
           "You will be able to see the image once I provide it to you. Please answer my questions.",
    roles=("Human", "Assistant"),
    messages=[],
    offset=2,
    sep_style=SeparatorStyle.SINGLE,
    sep="###",
)

def get_outputs(

    model,

    batch_images,

    attention_mask,

    max_generation_length,

    min_generation_length,

    num_beams,

    length_penalty,

    input_ids,

    image_start_index_list=None,

    image_nums=None,

    bad_words_ids=None,

):
    #  and torch.cuda.amp.autocast(dtype=torch.float16)
    with torch.inference_mode():
        outputs = model(
            vision_x=batch_images,
            lang_x=input_ids,
            attention_mask=attention_mask,
            labels=None,
            image_nums=image_nums,
            image_start_index_list=image_start_index_list,
            added_bbox_list=None,
            add_box=False,
        )
        # outputs = model.generate(
        #     batch_images,
        #     input_ids,
        #     attention_mask=attention_mask,
        #     max_new_tokens=max_generation_length,
        #     min_length=min_generation_length,
        #     num_beams=num_beams,
        #     length_penalty=length_penalty,
        #     image_start_index_list=image_start_index_list,
        #     image_nums=image_nums,
        #     bad_words_ids=bad_words_ids,
        # )

    return outputs

def generate(

    idx,

    image,

    text,

    image_processor,

    tokenizer,

    flamingo,

    vis_embed_size=256,

    rank=0,

    world_size=1,

):
    if image is None:
        raise gr.Error("Please upload an image.")
    flamingo.eval()
    loc_token_ids = []
    for i in range(1000):
        loc_token_ids.append(int(tokenizer(f"<loc_{i}>", add_special_tokens=False)["input_ids"][-1]))
    media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
    endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
    pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
    bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
    prebox_token_id = tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]

    image_ori = image
    image = image.convert("RGB")
    width = image.width
    height = image.height
    image = image.resize((224, 224))
    batch_images = image_processor(image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
    if idx == 1:
        prompt = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token * vis_embed_size}<|#endofimage#|><|#object#|> {text.rstrip('.').strip()}<|#endofobject#|><|#visual#|>"]
        bad_words_ids = None
        max_generation_length = 5
    else:
        prompt = [f"<|#image#|>{tokenizer.pad_token * vis_embed_size}<|#endofimage#|>{text.rstrip('.')}"]
        bad_words_ids = loc_word_ids
        max_generation_length = 300
    encodings = tokenizer(
        prompt,
        padding="longest",
        truncation=True,
        return_tensors="pt",
        max_length=2000,
    )
    input_ids = encodings["input_ids"]
    attention_mask = encodings["attention_mask"]
    image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
    image_start_index_list = [[x] for x in image_start_index_list]
    image_nums = [1] * len(input_ids)
    outputs = get_outputs(
        model=flamingo,
        batch_images=batch_images,
        attention_mask=attention_mask,
        max_generation_length=max_generation_length,
        min_generation_length=4,
        num_beams=1,
        length_penalty=1.0,
        input_ids=input_ids,
        bad_words_ids=bad_words_ids,
        image_start_index_list=image_start_index_list,
        image_nums=image_nums,
    )

    boxes = outputs["boxes"]
    scores = outputs["scores"]
    if len(scores) > 0:
        box = boxes[scores.argmax()]/224
    print(f"{box}")

    
    if len(boxes)>0:
        open_cv_image = np.array(image_ori)
        # Convert RGB to BGR
        open_cv_image = open_cv_image[:, :, ::-1].copy()
        box = box*[width,height,width,height]
        # for box in boxes:
        open_cv_image = cv2.rectangle(open_cv_image, box[:2].astype(int), box[2:].astype(int), (255, 0, 0), 2)
        out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
        return f"Output:{box}", out_image
    else:
        gen_text = tokenizer.batch_decode(outputs)
        return (f"{gen_text}")

def preprocess_conv(data):
    conversation = ""
    BEGIN_SIGNAL = "### "
    END_SIGNAL = "\n"
    for idx, d in enumerate(data):
        from_str = d["from"]
        if from_str.lower() == "human":
            from_str = "Human"
        elif from_str.lower() == "gpt":
            from_str = "Assistant"
        else:
            from_str = 'unknown'
        conversation += (BEGIN_SIGNAL + from_str + ": " + d["value"] + END_SIGNAL)
    return conversation

def preprocess_image(sample, image_processor):
    image = image_processor(sample)
    if isinstance(image, transformers.image_processing_utils.BatchFeature):
        image = torch.tensor(image["pixel_values"][0])
    return image

class Chat:
    def __init__(self, model, vis_processor, tokenizer, vis_embed_size ):
        self.model = model
        self.vis_processor = vis_processor
        self.tokenizer = tokenizer
        self.vis_embed_size = vis_embed_size
        self.conv = []
        # stop_words_ids = [torch.tensor([835]).to(self.device),
        #                   torch.tensor([2277, 29937]).to(self.device)]  # '###' can be encoded in two different ways.
        # self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])

    def ask(self, text, conv,radio):
        if radio in ["Cap"]:
            conv.append({
                "from": "human",
                "value": "",
            })
        elif radio in ["VQA"]:
            conv.append({
                "from": "human",
                "value": f"Answer the question using a single word or phrase. {text}",
            })
        elif radio in ["REC"]:
            conv.append({
                "from": "human",
                "value": f"Please provide the bounding box coordinate of the region this sentence describes: {text}.",
            })
        else:
            conv.append({
                "from": "human",
                "value": text,
            })
        # if len(conv.messages) > 0 and conv.messages[-1][0] == conv.roles[0] \
        #         and conv.messages[-1][1][-6:] == '</Img>':  # last message is image.
        #     conv.messages[-1][1] = ' '.join([conv.messages[-1][1], text])
        # else:
        #     conv.append_message(conv.roles[0], text)

    def answer(self, conv, img_list, radio, text_input, max_new_tokens=200, num_beams=5, min_length=1, top_p=0.9,

               repetition_penalty=1.0, length_penalty=1, temperature=1, max_length=2000):
        # conv.append_message(conv.roles[1], None)
        # embs = self.get_context_emb(conv, img_list)
        # 
        # # current_max_len = embs.shape[1] + max_new_tokens + 100
        # # begin_idx = max(0, current_max_len - max_length)
        # # embs = embs[:, begin_idx:]
        # outputs = self.model.llama_model.generate(
        #     inputs_embeds=embs,
        #     max_new_tokens=max_new_tokens,
        #     stopping_criteria=self.stopping_criteria,
        #     num_beams=num_beams,
        #     min_length=min_length,
        #     top_p=top_p,
        #     repetition_penalty=repetition_penalty,
        #     length_penalty=length_penalty,
        #     temperature=temperature,
        # )
        # output_token = outputs[0]
        # if output_token[0] == 0:
        #     output_token = output_token[1:]
        # output_text = self.model.llama_tokenizer.decode(output_token, add_special_tokens=False)
        # output_text = output_text.split('###')[0]  # remove the stop sign '###'
        # output_text = output_text.split('Assistant:')[-1].strip()
        # conv.messages[-1][1] = output_text
        visual_token = "<|#visual#|>"
        previsual_token = "<|#previsual#|>"
        box_token = "<|#box#|>"
        prebox_token = "<|#prebox#|>"
        end_token = "<|#endofobject#|>"
        object_token = "<|#object#|>"
        end_of_attr_token = "<|#endofattr#|>"
        preend_of_attr_token = "<|#preendofattr#|>"
        media_token_id = self.tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
        box_token_id = self.tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1]
        endofobject_token_id = self.tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1]
        endofattr_token_id = self.tokenizer("<|#endofattr#|>", add_special_tokens=False)["input_ids"][-1]
        endofmedia_token_id = self.tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
        visual_token_id = self.tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
        previsual_token_id = self.tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
        prebox_token_id = self.tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
        size = 224
        self.model.eval()
        # "/gpfs/u/home/LMCG/LMCGljnn/scratch-shared/cdl/tmp_img/chat_vis/chat19.png"
        # image_path = input("Please enter the image path: ")
        image = img_list[0].convert("RGB")
        image_ori = image
        image = image.resize((size, size))
        print(f"image size: {image.size}")
        batch_images = preprocess_image(image, self.vis_processor).unsqueeze(0).unsqueeze(1).unsqueeze(0)
        
        # conversation = []
        human_sentence = None
        if radio in ["Cap","VQA"]:
            conv.append({
                "from": "gpt",
                "value": "",
            })
        elif radio in ["REC"]:
            conv.append(
                {
                    "from": "gpt",
                    "value": object_token + text_input + end_token + visual_token,
                }
            )
        else:
            conv.append({
                        "from": "gpt",
                        "value": "",
                    })
        # while True:
        #     human_sentence = input("### Human: ")
        #     if human_sentence == "#end#":
        #         break
        #     conversation.append({
        #         "from": "human",
        #         "value": human_sentence,
        #     })
        #     conversation.append({
        #         "from": "gpt",
        #         "value": "",
        #     })
        text = preprocess_conv(conv).strip()
        caption = f"<|#image#|>{self.tokenizer.pad_token * self.vis_embed_size}<|#endofimage#|>{text}"
        encodings = self.tokenizer(
            caption,
            padding="longest",
            truncation=True,
            return_tensors="pt",
            max_length=2000,
        )
        input_ids = encodings["input_ids"]
        attention_mask = encodings["attention_mask"]
        image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
        image_start_index_list = [[x] for x in image_start_index_list]
        image_nums = [1] * len(input_ids)
        added_bbox_list = []
        with torch.inference_mode():
            text_outputs = self.model.generate(
                batch_images,
                input_ids,
                attention_mask=attention_mask,
                max_new_tokens=20,
                # min_new_tokens=8,
                num_beams=1,
                # length_penalty=0,
                image_start_index_list=image_start_index_list,
                image_nums=image_nums,
                added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
            )
        # and torch.cuda.amp.autocast(dtype=torch.float16)
        with torch.no_grad():
            outputs = self.model(
                vision_x=batch_images,
                lang_x=input_ids,
                attention_mask=attention_mask,
                image_nums=image_nums,
                image_start_index_list=image_start_index_list,
                added_bbox_list=None,
                add_box=False,
            )
        boxes = outputs["boxes"]
        scores = outputs["scores"]
        if len(scores) > 0:
            box = boxes[scores.argmax()] / 224
        print(f"{box}")
        out_image = None

        if len(boxes)>0:
            width, height = image_ori.size
            open_cv_image = np.array(image_ori)
            # Convert RGB to BGR
            open_cv_image = open_cv_image[:, :, ::-1].copy()
            box = box * [width, height, width, height]
            # for box in boxes:
            open_cv_image = cv2.rectangle(open_cv_image, box[:2].astype(int), box[2:].astype(int), (255, 0, 0), 2)
            out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
            
            
        # output_token = outputs[0, input_ids.shape[1]:]
        # output_text = tokenizer.decode(output_token, skip_special_tokens=True).strip()
        # conv[-1]["value"] = output_text
        # # conv.messages[-1][1] = output_text
        # print(
        #     f"### Assistant: {tokenizer.decode(outputs[0, input_ids.shape[1]:], skip_special_tokens=True).strip()}")
        output_text = self.tokenizer.decode(text_outputs[0])
        output_text = re.findall(r'Assistant:(.+)', output_text)[-1]

        return output_text, out_image

    def upload_img(self, image, conv, img_list):
        img_list.append(image)
        # if isinstance(image, str):  # is a image path
        #     raw_image = Image.open(image).convert('RGB')
        #     image = image.resize((224, 224))
        #     image = self.vis_processor(raw_image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
        # elif isinstance(image, Image.Image):
        #     raw_image = image
        #     image = image.resize((224, 224))
        #     image = self.vis_processor(raw_image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
        # elif isinstance(image, torch.Tensor):
        #     if len(image.shape) == 3:
        #         image = image.unsqueeze(0)
        #     # image = image.to(self.device)
        # 
        # # image_emb, _ = self.model.encode_img(image)
        # img_list.append(image_emb)
        # conv.append_message(conv.roles[0], "<Img><ImageHere></Img>")
        msg = "Received."
        # self.conv.append_message(self.conv.roles[1], msg)
        return msg

    # def get_context_emb(self, conv, img_list):
    #     prompt = conv.get_prompt()
    #     prompt_segs = prompt.split('<ImageHere>')
    #     assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images."
    #     seg_tokens = [
    #         self.model.llama_tokenizer(
    #             seg, return_tensors="pt", add_special_tokens=i == 0).to(self.device).input_ids
    #         # only add bos to the first seg
    #         for i, seg in enumerate(prompt_segs)
    #     ]
    #     seg_embs = [self.model.llama_model.model.embed_tokens(seg_t) for seg_t in seg_tokens]
    #     mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
    #     mixed_embs = torch.cat(mixed_embs, dim=1)
    #     return mixed_embs
    
def evaluate_exp(

    model,

    tokenizer,

    image_processor,

    vis_embed_size=None,

    rank=0,

    world_size=1,

    id=0,

    add_visual=True,

):
    media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
    box_token_id = tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1]
    endofobject_token_id = tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1]
    endofattr_token_id = tokenizer("<|#endofattr#|>", add_special_tokens=False)["input_ids"][-1]
    endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
    visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
    previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
    prebox_token_id = tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
    size = image_processor.size["shortest_edge"]
    model.eval()
    # "/gpfs/u/home/LMCG/LMCGljnn/scratch-shared/cdl/tmp_img/chat_vis/chat19.png"
    image_path = input("Please enter the image path: ")
    image = Image.open(image_path).convert("RGB")
    image = image.resize((size, size))
    print(f"image size: {image.size}")
    batch_images = preprocess_image(image, image_processor).unsqueeze(0).unsqueeze(1).unsqueeze(0)
    conversation = []
    human_sentence = None
    while True:
        human_sentence = input("### Human: ")
        if human_sentence == "#end#":
            break
        conversation.append({
            "from": "human",
            "value": human_sentence,
        })
        conversation.append({
            "from": "gpt",
            "value": "",
        })
        text = preprocess_conv(conversation).strip()
        caption = f"<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>{text}"
        encodings = tokenizer(
            caption,
            padding="longest",
            truncation=True,
            return_tensors="pt",
            max_length=2000,
        )
        input_ids = encodings["input_ids"].to("cuda")
        attention_mask = encodings["attention_mask"].to("cuda")
        image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
        image_start_index_list = [[x] for x in image_start_index_list]
        image_nums = [1] * len(input_ids)
        with torch.no_grad() and torch.cuda.amp.autocast(dtype=torch.float16):
            outputs = model.generate(
                batch_images,
                input_ids,
                attention_mask=attention_mask,
                max_new_tokens=100,
                # min_new_tokens=8,
                num_beams=1,
                image_start_index_list=image_start_index_list,
                image_nums=image_nums,
            )
        print(f"### Assistant: {tokenizer.decode(outputs[0, input_ids.shape[1]:], skip_special_tokens=True).strip()}")