Spaces:
Runtime error
Runtime error
File size: 14,124 Bytes
0b7b08a 114d0c9 a1d409e 6241c4a 0b7b08a fdffde6 c43500b 0b7b08a 0ddf7b1 c43500b 0b7b08a c43500b 0b7b08a fdffde6 0b7b08a 7f3585f 0b7b08a 7f3585f 0b7b08a 7f3585f 0b7b08a 7f3585f 0b7b08a 263fdaf 0b7b08a 7026d38 0b7b08a 468d028 7f3585f 0b7b08a 468d028 7026d38 468d028 bb8b56a 7026d38 0b7b08a 7026d38 0b7b08a 7026d38 0b7b08a fdffde6 0b7b08a fdffde6 0b7b08a fdffde6 0b7b08a fdffde6 0b7b08a fdffde6 0b7b08a fdffde6 0b7b08a fdffde6 0b7b08a fdffde6 0b7b08a fdffde6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
import os
# os.system("cd transformers && pip install .")
os.system("cd multimodal && pip install .")
os.system("cd multimodal/YOLOX && pip install .")
import numpy as np
import torch
from PIL import Image
import string
import cv2
import gradio as gr
import torch
from PIL import Image
from huggingface_hub import hf_hub_download, login
from open_flamingo.src.factory import create_model_and_transforms
from open_flamingo.chat.conversation import Chat, CONV_VISION
flamingo, image_processor, tokenizer, vis_embed_size = create_model_and_transforms(
"ViT-L-14",
"datacomp_xl_s13b_b90k",
"EleutherAI/pythia-1.4b",
"EleutherAI/pythia-1.4b",
location_token_num=1000,
lora=False,
lora_r=16,
use_sam=None,
add_visual_token=True,
use_format_v2=True,
add_box=True,
add_pe=False,
add_relation=False,
enhance_data=False,
)
checkpoint_path = hf_hub_download("chendl/compositional_test", "pythiaS.pt")
checkpoint = torch.load(checkpoint_path, map_location="cpu")["model_state_dict"]
model_state_dict = {}
for key in checkpoint.keys():
model_state_dict[key.replace("module.", "")] = checkpoint[key]
if "vision_encoder.logit_scale"in model_state_dict:
# previous checkpoint has some unnecessary weights
del model_state_dict["vision_encoder.logit_scale"]
del model_state_dict["vision_encoder.visual.proj"]
del model_state_dict["vision_encoder.visual.ln_post.weight"]
del model_state_dict["vision_encoder.visual.ln_post.bias"]
flamingo.load_state_dict(model_state_dict, strict=True)
chat = Chat(flamingo, image_processor, tokenizer, vis_embed_size )
def get_outputs(
model,
batch_images,
attention_mask,
max_generation_length,
min_generation_length,
num_beams,
length_penalty,
input_ids,
image_start_index_list=None,
image_nums=None,
bad_words_ids=None,
):
# and torch.cuda.amp.autocast(dtype=torch.float16)
with torch.inference_mode():
outputs = model(
vision_x=batch_images,
lang_x=input_ids,
attention_mask=attention_mask,
labels=None,
image_nums=image_nums,
image_start_index_list=image_start_index_list,
added_bbox_list=None,
add_box=False,
)
# outputs = model.generate(
# batch_images,
# input_ids,
# attention_mask=attention_mask,
# max_new_tokens=max_generation_length,
# min_length=min_generation_length,
# num_beams=num_beams,
# length_penalty=length_penalty,
# image_start_index_list=image_start_index_list,
# image_nums=image_nums,
# bad_words_ids=bad_words_ids,
# )
return outputs
def generate(
idx,
image,
text,
vis_embed_size=256,
rank=0,
world_size=1,
):
if image is None:
raise gr.Error("Please upload an image.")
flamingo.eval()
loc_token_ids = []
for i in range(1000):
loc_token_ids.append(int(tokenizer(f"<loc_{i}>", add_special_tokens=False)["input_ids"][-1]))
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
prebox_token_id = tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1]
image_ori = image
image = image.convert("RGB")
width = image.width
height = image.height
image = image.resize((224, 224))
batch_images = image_processor(image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
if idx == 1:
prompt = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token * vis_embed_size}<|#endofimage#|><|#object#|> {text.rstrip('.').strip()}<|#endofobject#|><|#visual#|>"]
bad_words_ids = None
max_generation_length = 5
else:
prompt = [f"<|#image#|>{tokenizer.pad_token * vis_embed_size}<|#endofimage#|>{text.rstrip('.')}"]
bad_words_ids = loc_word_ids
max_generation_length = 30
encodings = tokenizer(
prompt,
padding="longest",
truncation=True,
return_tensors="pt",
max_length=2000,
)
input_ids = encodings["input_ids"]
attention_mask = encodings["attention_mask"]
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
image_start_index_list = [[x] for x in image_start_index_list]
image_nums = [1] * len(input_ids)
outputs = get_outputs(
model=flamingo,
batch_images=batch_images,
attention_mask=attention_mask,
max_generation_length=max_generation_length,
min_generation_length=4,
num_beams=1,
length_penalty=1.0,
input_ids=input_ids,
bad_words_ids=bad_words_ids,
image_start_index_list=image_start_index_list,
image_nums=image_nums,
)
boxes = outputs["boxes"]
scores = outputs["scores"]
if len(scores) > 0:
box = boxes[scores.argmax()]/224
print(f"{box}")
if idx == 1:
open_cv_image = np.array(image_ori)
# Convert RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
box = box*[width,height,width,height]
# for box in boxes:
open_cv_image = cv2.rectangle(open_cv_image, box[:2].astype(int), box[2:].astype(int), (255, 0, 0), 2)
out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
return f"Output:{box}", out_image
elif idx == 2:
gen_text = tokenizer.batch_decode(outputs)
return (f"Question: {text.strip()} Answer: {gen_text}")
else:
gen_text = tokenizer.batch_decode(outputs)
return (f"Output:{gen_text}")
title = """<h1 align="center">Demo of Compositional-VLM</h1>"""
description = """<h3>This is the demo of Compositional-VLM. Upload your images and start chatting!</h3>"""
article = """<div style='display:flex; gap: 0.25rem; '><a href='https://compositionalvlm.github.io/'><img src='https://img.shields.io/badge/Project-Page-Green'></a><a href='https://github.com/Vision-CAIR/MiniGPT-4'><img src='https://img.shields.io/badge/Github-Code-blue'></a><a href='https://github.com/TsuTikgiau/blip2-llm/blob/release_prepare/MiniGPT_4.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></div>
"""
# TODO show examples below
# ========================================
# Gradio Setting
# ========================================
def gradio_reset(chat_state, img_list):
if chat_state is not None:
chat_state = []
if img_list is not None:
img_list = []
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your image first',
interactive=False), gr.update(
value="Upload & Start Chat", interactive=True), chat_state, img_list
def upload_img(gr_img, text_input, chat_state):
if gr_img is None:
return None, None, gr.update(interactive=True), chat_state, None
chat_state = []
img_list = []
llm_message = chat.upload_img(gr_img, chat_state, img_list)
return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(
value="Start Chatting", interactive=False), chat_state, img_list
def gradio_ask(user_message, chatbot, chat_state):
if len(user_message) == 0:
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
chat.ask(user_message, chat_state)
chatbot = chatbot + [[user_message, None]]
return '', chatbot, chat_state
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
llm_message = \
chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=300, num_beams=1, temperature=temperature,
max_length=2000)[0]
chatbot[-1][1] = llm_message
return chatbot, chat_state, img_list
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(SHARED_UI_WARNING)
gr.Markdown(description)
gr.Markdown(article)
with gr.Row():
with gr.Column(scale=0.5):
image = gr.Image(type="pil")
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
clear = gr.Button("Restart")
num_beams = gr.Slider(
minimum=1,
maximum=5,
value=1,
step=1,
interactive=True,
label="beam search numbers)",
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
interactive=True,
label="Temperature",
)
with gr.Column():
chat_state = gr.State()
img_list = gr.State()
chatbot = gr.Chatbot(label='Compositional-VLM')
text_input = gr.Textbox(label='User', placeholder='Please upload your image first', interactive=False)
upload_button.click(upload_img, [image, text_input, chat_state],
[image, text_input, upload_button, chat_state, img_list])
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
)
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list],
queue=False)
demo.launch(enable_queue=True)
#
# with gr.Blocks() as demo:
# gr.Markdown(
# """
# π Object Centric Pretraining Demo
# In this demo we showcase the in-context learning and grounding capabilities of the Object-Centric Pretrained model, a large multimodal model. Note that we add two additional demonstrations to the ones presented to improve the demo experience.
# The model is trained on an interleaved mixture of text, images and bounding box and is able to generate text conditioned on sequences of images/text.
# """
# )
#
# with gr.Accordion("See terms and conditions"):
# gr.Markdown(
# """**Please read the following information carefully before proceeding.**This demo does NOT store any personal information on its users, and it does NOT store user queries.""")
#
# with gr.Tab("π· Image Captioning"):
# with gr.Row():
#
#
# query_image = gr.Image(type="pil")
# with gr.Row():
# chat_input = gr.Textbox(lines=1, label="Chat Input")
# text_output = gr.Textbox(value="Output:", label="Model output")
#
# run_btn = gr.Button("Run model")
#
#
#
# def on_click_fn(img,text): return generate(0, img, text)
#
# run_btn.click(on_click_fn, inputs=[query_image,chat_input], outputs=[text_output])
#
# with gr.Tab("π¦ Grounding"):
# with gr.Row():
# with gr.Column(scale=1):
# query_image = gr.Image(type="pil")
# with gr.Column(scale=1):
# out_image = gr.Image(type="pil")
# with gr.Row():
# chat_input = gr.Textbox(lines=1, label="Chat Input")
# text_output = gr.Textbox(value="Output:", label="Model output")
#
# run_btn = gr.Button("Run model")
#
#
# def on_click_fn(img, text): return generate(1, img, text)
#
#
# run_btn.click(on_click_fn, inputs=[query_image, chat_input], outputs=[text_output, out_image])
#
# with gr.Tab("π’ Counting objects"):
# with gr.Row():
# query_image = gr.Image(type="pil")
# with gr.Row():
# chat_input = gr.Textbox(lines=1, label="Chat Input")
# text_output = gr.Textbox(value="Output:", label="Model output")
#
# run_btn = gr.Button("Run model")
#
#
# def on_click_fn(img,text): return generate(0, img, text)
#
#
# run_btn.click(on_click_fn, inputs=[query_image, chat_input], outputs=[text_output])
#
# with gr.Tab("π΅οΈ Visual Question Answering"):
# with gr.Row():
# query_image = gr.Image(type="pil")
# with gr.Row():
# question = gr.Textbox(lines=1, label="Question")
# text_output = gr.Textbox(value="Output:", label="Model output")
#
# run_btn = gr.Button("Run model")
#
#
# def on_click_fn(img, txt): return generate(2, img, txt)
#
#
# run_btn.click(
# on_click_fn, inputs=[query_image, question], outputs=[text_output]
# )
#
# with gr.Tab("π Custom"):
# gr.Markdown(
# """### Customize the demonstration by uploading your own images and text samples.
# ### **Note: Any text prompt you use will be prepended with an 'Output:', so you don't need to include it in your prompt.**"""
# )
# with gr.Row():
# query_image = gr.Image(type="pil")
# with gr.Row():
# question = gr.Textbox(lines=1, label="Question")
# text_output = gr.Textbox(value="Output:", label="Model output")
#
# run_btn = gr.Button("Run model")
#
#
# def on_click_fn(img, txt): return generate(2, img, txt)
#
#
# run_btn.click(
# on_click_fn, inputs=[query_image, question], outputs=[text_output]
# )
#
# demo.queue(concurrency_count=1)
# demo.launch()
|