File size: 13,611 Bytes
0b7b08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
#!/usr/bin/env python3
# Copyright (c) Megvii Inc. All rights reserved.

import os
import random

import torch
import torch.distributed as dist
import torch.nn as nn

from .base_exp import BaseExp

__all__ = ["Exp", "check_exp_value"]


class Exp(BaseExp):
    def __init__(self):
        super().__init__()

        # ---------------- model config ---------------- #
        # detect classes number of model
        self.num_classes = 80
        # factor of model depth
        self.depth = 1.00
        # factor of model width
        self.width = 1.00
        # activation name. For example, if using "relu", then "silu" will be replaced to "relu".
        self.act = "silu"

        # ---------------- dataloader config ---------------- #
        # set worker to 4 for shorter dataloader init time
        # If your training process cost many memory, reduce this value.
        self.data_num_workers = 4
        self.input_size = (640, 640)  # (height, width)
        # Actual multiscale ranges: [640 - 5 * 32, 640 + 5 * 32].
        # To disable multiscale training, set the value to 0.
        self.multiscale_range = 5
        # You can uncomment this line to specify a multiscale range
        # self.random_size = (14, 26)
        # dir of dataset images, if data_dir is None, this project will use `datasets` dir
        self.data_dir = None
        # name of annotation file for training
        self.train_ann = "instances_train2017.json"
        # name of annotation file for evaluation
        self.val_ann = "instances_val2017.json"
        # name of annotation file for testing
        self.test_ann = "instances_test2017.json"

        # --------------- transform config ----------------- #
        # prob of applying mosaic aug
        self.mosaic_prob = 1.0
        # prob of applying mixup aug
        self.mixup_prob = 1.0
        # prob of applying hsv aug
        self.hsv_prob = 1.0
        # prob of applying flip aug
        self.flip_prob = 0.5
        # rotation angle range, for example, if set to 2, the true range is (-2, 2)
        self.degrees = 10.0
        # translate range, for example, if set to 0.1, the true range is (-0.1, 0.1)
        self.translate = 0.1
        self.mosaic_scale = (0.1, 2)
        # apply mixup aug or not
        self.enable_mixup = True
        self.mixup_scale = (0.5, 1.5)
        # shear angle range, for example, if set to 2, the true range is (-2, 2)
        self.shear = 2.0

        # --------------  training config --------------------- #
        # epoch number used for warmup
        self.warmup_epochs = 5
        # max training epoch
        self.max_epoch = 300
        # minimum learning rate during warmup
        self.warmup_lr = 0
        self.min_lr_ratio = 0.05
        # learning rate for one image. During training, lr will multiply batchsize.
        self.basic_lr_per_img = 0.01 / 64.0
        # name of LRScheduler
        self.scheduler = "yoloxwarmcos"
        # last #epoch to close augmention like mosaic
        self.no_aug_epochs = 15
        # apply EMA during training
        self.ema = True

        # weight decay of optimizer
        self.weight_decay = 5e-4
        # momentum of optimizer
        self.momentum = 0.9
        # log period in iter, for example,
        # if set to 1, user could see log every iteration.
        self.print_interval = 10
        # eval period in epoch, for example,
        # if set to 1, model will be evaluate after every epoch.
        self.eval_interval = 10
        # save history checkpoint or not.
        # If set to False, yolox will only save latest and best ckpt.
        self.save_history_ckpt = True
        # name of experiment
        self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]

        # -----------------  testing config ------------------ #
        # output image size during evaluation/test
        self.test_size = (640, 640)
        # confidence threshold during evaluation/test,
        # boxes whose scores are less than test_conf will be filtered
        self.test_conf = 0.01
        # nms threshold
        self.nmsthre = 0.65

    def get_model(self):
        from yolox.models import YOLOX, YOLOPAFPN, YOLOXHead

        def init_yolo(M):
            for m in M.modules():
                if isinstance(m, nn.BatchNorm2d):
                    m.eps = 1e-3
                    m.momentum = 0.03

        if getattr(self, "model", None) is None:
            in_channels = [256, 512, 1024]
            backbone = YOLOPAFPN(self.depth, self.width, in_channels=in_channels, act=self.act)
            head = YOLOXHead(self.num_classes, self.width, in_channels=in_channels, act=self.act)
            self.model = YOLOX(backbone, head)

        self.model.apply(init_yolo)
        self.model.head.initialize_biases(1e-2)
        self.model.train()
        return self.model

    def get_dataset(self, cache: bool = False, cache_type: str = "ram"):
        """
        Get dataset according to cache and cache_type parameters.
        Args:
            cache (bool): Whether to cache imgs to ram or disk.
            cache_type (str, optional): Defaults to "ram".
                "ram" : Caching imgs to ram for fast training.
                "disk": Caching imgs to disk for fast training.
        """
        from yolox.data import COCODataset, TrainTransform

        return COCODataset(
            data_dir=self.data_dir,
            json_file=self.train_ann,
            img_size=self.input_size,
            preproc=TrainTransform(
                max_labels=50,
                flip_prob=self.flip_prob,
                hsv_prob=self.hsv_prob
            ),
            cache=cache,
            cache_type=cache_type,
        )

    def get_data_loader(self, batch_size, is_distributed, no_aug=False, cache_img: str = None):
        """
        Get dataloader according to cache_img parameter.
        Args:
            no_aug (bool, optional): Whether to turn off mosaic data enhancement. Defaults to False.
            cache_img (str, optional): cache_img is equivalent to cache_type. Defaults to None.
                "ram" : Caching imgs to ram for fast training.
                "disk": Caching imgs to disk for fast training.
                None: Do not use cache, in this case cache_data is also None.
        """
        from yolox.data import (
            TrainTransform,
            YoloBatchSampler,
            DataLoader,
            InfiniteSampler,
            MosaicDetection,
            worker_init_reset_seed,
        )
        from yolox.utils import wait_for_the_master

        # if cache is True, we will create self.dataset before launch
        # else we will create self.dataset after launch
        if self.dataset is None:
            with wait_for_the_master():
                assert cache_img is None, \
                    "cache_img must be None if you didn't create self.dataset before launch"
                self.dataset = self.get_dataset(cache=False, cache_type=cache_img)

        self.dataset = MosaicDetection(
            dataset=self.dataset,
            mosaic=not no_aug,
            img_size=self.input_size,
            preproc=TrainTransform(
                max_labels=120,
                flip_prob=self.flip_prob,
                hsv_prob=self.hsv_prob),
            degrees=self.degrees,
            translate=self.translate,
            mosaic_scale=self.mosaic_scale,
            mixup_scale=self.mixup_scale,
            shear=self.shear,
            enable_mixup=self.enable_mixup,
            mosaic_prob=self.mosaic_prob,
            mixup_prob=self.mixup_prob,
        )

        if is_distributed:
            batch_size = batch_size // dist.get_world_size()

        sampler = InfiniteSampler(len(self.dataset), seed=self.seed if self.seed else 0)

        batch_sampler = YoloBatchSampler(
            sampler=sampler,
            batch_size=batch_size,
            drop_last=False,
            mosaic=not no_aug,
        )

        dataloader_kwargs = {"num_workers": self.data_num_workers, "pin_memory": True}
        dataloader_kwargs["batch_sampler"] = batch_sampler

        # Make sure each process has different random seed, especially for 'fork' method.
        # Check https://github.com/pytorch/pytorch/issues/63311 for more details.
        dataloader_kwargs["worker_init_fn"] = worker_init_reset_seed

        train_loader = DataLoader(self.dataset, **dataloader_kwargs)

        return train_loader

    def random_resize(self, data_loader, epoch, rank, is_distributed):
        tensor = torch.LongTensor(2).cuda()

        if rank == 0:
            size_factor = self.input_size[1] * 1.0 / self.input_size[0]
            if not hasattr(self, 'random_size'):
                min_size = int(self.input_size[0] / 32) - self.multiscale_range
                max_size = int(self.input_size[0] / 32) + self.multiscale_range
                self.random_size = (min_size, max_size)
            size = random.randint(*self.random_size)
            size = (int(32 * size), 32 * int(size * size_factor))
            tensor[0] = size[0]
            tensor[1] = size[1]

        if is_distributed:
            dist.barrier()
            dist.broadcast(tensor, 0)

        input_size = (tensor[0].item(), tensor[1].item())
        return input_size

    def preprocess(self, inputs, targets, tsize):
        scale_y = tsize[0] / self.input_size[0]
        scale_x = tsize[1] / self.input_size[1]
        if scale_x != 1 or scale_y != 1:
            inputs = nn.functional.interpolate(
                inputs, size=tsize, mode="bilinear", align_corners=False
            )
            targets[..., 1::2] = targets[..., 1::2] * scale_x
            targets[..., 2::2] = targets[..., 2::2] * scale_y
        return inputs, targets

    def get_optimizer(self, batch_size):
        if "optimizer" not in self.__dict__:
            if self.warmup_epochs > 0:
                lr = self.warmup_lr
            else:
                lr = self.basic_lr_per_img * batch_size

            pg0, pg1, pg2 = [], [], []  # optimizer parameter groups

            for k, v in self.model.named_modules():
                if hasattr(v, "bias") and isinstance(v.bias, nn.Parameter):
                    pg2.append(v.bias)  # biases
                if isinstance(v, nn.BatchNorm2d) or "bn" in k:
                    pg0.append(v.weight)  # no decay
                elif hasattr(v, "weight") and isinstance(v.weight, nn.Parameter):
                    pg1.append(v.weight)  # apply decay

            optimizer = torch.optim.SGD(
                pg0, lr=lr, momentum=self.momentum, nesterov=True
            )
            optimizer.add_param_group(
                {"params": pg1, "weight_decay": self.weight_decay}
            )  # add pg1 with weight_decay
            optimizer.add_param_group({"params": pg2})
            self.optimizer = optimizer

        return self.optimizer

    def get_lr_scheduler(self, lr, iters_per_epoch):
        from yolox.utils import LRScheduler

        scheduler = LRScheduler(
            self.scheduler,
            lr,
            iters_per_epoch,
            self.max_epoch,
            warmup_epochs=self.warmup_epochs,
            warmup_lr_start=self.warmup_lr,
            no_aug_epochs=self.no_aug_epochs,
            min_lr_ratio=self.min_lr_ratio,
        )
        return scheduler

    def get_eval_dataset(self, **kwargs):
        from yolox.data import COCODataset, ValTransform
        testdev = kwargs.get("testdev", False)
        legacy = kwargs.get("legacy", False)

        return COCODataset(
            data_dir=self.data_dir,
            json_file=self.val_ann if not testdev else self.test_ann,
            name="val2017" if not testdev else "test2017",
            img_size=self.test_size,
            preproc=ValTransform(legacy=legacy),
        )

    def get_eval_loader(self, batch_size, is_distributed, **kwargs):
        valdataset = self.get_eval_dataset(**kwargs)

        if is_distributed:
            batch_size = batch_size // dist.get_world_size()
            sampler = torch.utils.data.distributed.DistributedSampler(
                valdataset, shuffle=False
            )
        else:
            sampler = torch.utils.data.SequentialSampler(valdataset)

        dataloader_kwargs = {
            "num_workers": self.data_num_workers,
            "pin_memory": True,
            "sampler": sampler,
        }
        dataloader_kwargs["batch_size"] = batch_size
        val_loader = torch.utils.data.DataLoader(valdataset, **dataloader_kwargs)

        return val_loader

    def get_evaluator(self, batch_size, is_distributed, testdev=False, legacy=False):
        from yolox.evaluators import COCOEvaluator

        return COCOEvaluator(
            dataloader=self.get_eval_loader(batch_size, is_distributed,
                                            testdev=testdev, legacy=legacy),
            img_size=self.test_size,
            confthre=self.test_conf,
            nmsthre=self.nmsthre,
            num_classes=self.num_classes,
            testdev=testdev,
        )

    def get_trainer(self, args):
        from yolox.core import Trainer
        trainer = Trainer(self, args)
        # NOTE: trainer shouldn't be an attribute of exp object
        return trainer

    def eval(self, model, evaluator, is_distributed, half=False, return_outputs=False):
        return evaluator.evaluate(model, is_distributed, half, return_outputs=return_outputs)


def check_exp_value(exp: Exp):
    h, w = exp.input_size
    assert h % 32 == 0 and w % 32 == 0, "input size must be multiples of 32"