Spaces:
Runtime error
Runtime error
File size: 13,611 Bytes
0b7b08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
#!/usr/bin/env python3
# Copyright (c) Megvii Inc. All rights reserved.
import os
import random
import torch
import torch.distributed as dist
import torch.nn as nn
from .base_exp import BaseExp
__all__ = ["Exp", "check_exp_value"]
class Exp(BaseExp):
def __init__(self):
super().__init__()
# ---------------- model config ---------------- #
# detect classes number of model
self.num_classes = 80
# factor of model depth
self.depth = 1.00
# factor of model width
self.width = 1.00
# activation name. For example, if using "relu", then "silu" will be replaced to "relu".
self.act = "silu"
# ---------------- dataloader config ---------------- #
# set worker to 4 for shorter dataloader init time
# If your training process cost many memory, reduce this value.
self.data_num_workers = 4
self.input_size = (640, 640) # (height, width)
# Actual multiscale ranges: [640 - 5 * 32, 640 + 5 * 32].
# To disable multiscale training, set the value to 0.
self.multiscale_range = 5
# You can uncomment this line to specify a multiscale range
# self.random_size = (14, 26)
# dir of dataset images, if data_dir is None, this project will use `datasets` dir
self.data_dir = None
# name of annotation file for training
self.train_ann = "instances_train2017.json"
# name of annotation file for evaluation
self.val_ann = "instances_val2017.json"
# name of annotation file for testing
self.test_ann = "instances_test2017.json"
# --------------- transform config ----------------- #
# prob of applying mosaic aug
self.mosaic_prob = 1.0
# prob of applying mixup aug
self.mixup_prob = 1.0
# prob of applying hsv aug
self.hsv_prob = 1.0
# prob of applying flip aug
self.flip_prob = 0.5
# rotation angle range, for example, if set to 2, the true range is (-2, 2)
self.degrees = 10.0
# translate range, for example, if set to 0.1, the true range is (-0.1, 0.1)
self.translate = 0.1
self.mosaic_scale = (0.1, 2)
# apply mixup aug or not
self.enable_mixup = True
self.mixup_scale = (0.5, 1.5)
# shear angle range, for example, if set to 2, the true range is (-2, 2)
self.shear = 2.0
# -------------- training config --------------------- #
# epoch number used for warmup
self.warmup_epochs = 5
# max training epoch
self.max_epoch = 300
# minimum learning rate during warmup
self.warmup_lr = 0
self.min_lr_ratio = 0.05
# learning rate for one image. During training, lr will multiply batchsize.
self.basic_lr_per_img = 0.01 / 64.0
# name of LRScheduler
self.scheduler = "yoloxwarmcos"
# last #epoch to close augmention like mosaic
self.no_aug_epochs = 15
# apply EMA during training
self.ema = True
# weight decay of optimizer
self.weight_decay = 5e-4
# momentum of optimizer
self.momentum = 0.9
# log period in iter, for example,
# if set to 1, user could see log every iteration.
self.print_interval = 10
# eval period in epoch, for example,
# if set to 1, model will be evaluate after every epoch.
self.eval_interval = 10
# save history checkpoint or not.
# If set to False, yolox will only save latest and best ckpt.
self.save_history_ckpt = True
# name of experiment
self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
# ----------------- testing config ------------------ #
# output image size during evaluation/test
self.test_size = (640, 640)
# confidence threshold during evaluation/test,
# boxes whose scores are less than test_conf will be filtered
self.test_conf = 0.01
# nms threshold
self.nmsthre = 0.65
def get_model(self):
from yolox.models import YOLOX, YOLOPAFPN, YOLOXHead
def init_yolo(M):
for m in M.modules():
if isinstance(m, nn.BatchNorm2d):
m.eps = 1e-3
m.momentum = 0.03
if getattr(self, "model", None) is None:
in_channels = [256, 512, 1024]
backbone = YOLOPAFPN(self.depth, self.width, in_channels=in_channels, act=self.act)
head = YOLOXHead(self.num_classes, self.width, in_channels=in_channels, act=self.act)
self.model = YOLOX(backbone, head)
self.model.apply(init_yolo)
self.model.head.initialize_biases(1e-2)
self.model.train()
return self.model
def get_dataset(self, cache: bool = False, cache_type: str = "ram"):
"""
Get dataset according to cache and cache_type parameters.
Args:
cache (bool): Whether to cache imgs to ram or disk.
cache_type (str, optional): Defaults to "ram".
"ram" : Caching imgs to ram for fast training.
"disk": Caching imgs to disk for fast training.
"""
from yolox.data import COCODataset, TrainTransform
return COCODataset(
data_dir=self.data_dir,
json_file=self.train_ann,
img_size=self.input_size,
preproc=TrainTransform(
max_labels=50,
flip_prob=self.flip_prob,
hsv_prob=self.hsv_prob
),
cache=cache,
cache_type=cache_type,
)
def get_data_loader(self, batch_size, is_distributed, no_aug=False, cache_img: str = None):
"""
Get dataloader according to cache_img parameter.
Args:
no_aug (bool, optional): Whether to turn off mosaic data enhancement. Defaults to False.
cache_img (str, optional): cache_img is equivalent to cache_type. Defaults to None.
"ram" : Caching imgs to ram for fast training.
"disk": Caching imgs to disk for fast training.
None: Do not use cache, in this case cache_data is also None.
"""
from yolox.data import (
TrainTransform,
YoloBatchSampler,
DataLoader,
InfiniteSampler,
MosaicDetection,
worker_init_reset_seed,
)
from yolox.utils import wait_for_the_master
# if cache is True, we will create self.dataset before launch
# else we will create self.dataset after launch
if self.dataset is None:
with wait_for_the_master():
assert cache_img is None, \
"cache_img must be None if you didn't create self.dataset before launch"
self.dataset = self.get_dataset(cache=False, cache_type=cache_img)
self.dataset = MosaicDetection(
dataset=self.dataset,
mosaic=not no_aug,
img_size=self.input_size,
preproc=TrainTransform(
max_labels=120,
flip_prob=self.flip_prob,
hsv_prob=self.hsv_prob),
degrees=self.degrees,
translate=self.translate,
mosaic_scale=self.mosaic_scale,
mixup_scale=self.mixup_scale,
shear=self.shear,
enable_mixup=self.enable_mixup,
mosaic_prob=self.mosaic_prob,
mixup_prob=self.mixup_prob,
)
if is_distributed:
batch_size = batch_size // dist.get_world_size()
sampler = InfiniteSampler(len(self.dataset), seed=self.seed if self.seed else 0)
batch_sampler = YoloBatchSampler(
sampler=sampler,
batch_size=batch_size,
drop_last=False,
mosaic=not no_aug,
)
dataloader_kwargs = {"num_workers": self.data_num_workers, "pin_memory": True}
dataloader_kwargs["batch_sampler"] = batch_sampler
# Make sure each process has different random seed, especially for 'fork' method.
# Check https://github.com/pytorch/pytorch/issues/63311 for more details.
dataloader_kwargs["worker_init_fn"] = worker_init_reset_seed
train_loader = DataLoader(self.dataset, **dataloader_kwargs)
return train_loader
def random_resize(self, data_loader, epoch, rank, is_distributed):
tensor = torch.LongTensor(2).cuda()
if rank == 0:
size_factor = self.input_size[1] * 1.0 / self.input_size[0]
if not hasattr(self, 'random_size'):
min_size = int(self.input_size[0] / 32) - self.multiscale_range
max_size = int(self.input_size[0] / 32) + self.multiscale_range
self.random_size = (min_size, max_size)
size = random.randint(*self.random_size)
size = (int(32 * size), 32 * int(size * size_factor))
tensor[0] = size[0]
tensor[1] = size[1]
if is_distributed:
dist.barrier()
dist.broadcast(tensor, 0)
input_size = (tensor[0].item(), tensor[1].item())
return input_size
def preprocess(self, inputs, targets, tsize):
scale_y = tsize[0] / self.input_size[0]
scale_x = tsize[1] / self.input_size[1]
if scale_x != 1 or scale_y != 1:
inputs = nn.functional.interpolate(
inputs, size=tsize, mode="bilinear", align_corners=False
)
targets[..., 1::2] = targets[..., 1::2] * scale_x
targets[..., 2::2] = targets[..., 2::2] * scale_y
return inputs, targets
def get_optimizer(self, batch_size):
if "optimizer" not in self.__dict__:
if self.warmup_epochs > 0:
lr = self.warmup_lr
else:
lr = self.basic_lr_per_img * batch_size
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
for k, v in self.model.named_modules():
if hasattr(v, "bias") and isinstance(v.bias, nn.Parameter):
pg2.append(v.bias) # biases
if isinstance(v, nn.BatchNorm2d) or "bn" in k:
pg0.append(v.weight) # no decay
elif hasattr(v, "weight") and isinstance(v.weight, nn.Parameter):
pg1.append(v.weight) # apply decay
optimizer = torch.optim.SGD(
pg0, lr=lr, momentum=self.momentum, nesterov=True
)
optimizer.add_param_group(
{"params": pg1, "weight_decay": self.weight_decay}
) # add pg1 with weight_decay
optimizer.add_param_group({"params": pg2})
self.optimizer = optimizer
return self.optimizer
def get_lr_scheduler(self, lr, iters_per_epoch):
from yolox.utils import LRScheduler
scheduler = LRScheduler(
self.scheduler,
lr,
iters_per_epoch,
self.max_epoch,
warmup_epochs=self.warmup_epochs,
warmup_lr_start=self.warmup_lr,
no_aug_epochs=self.no_aug_epochs,
min_lr_ratio=self.min_lr_ratio,
)
return scheduler
def get_eval_dataset(self, **kwargs):
from yolox.data import COCODataset, ValTransform
testdev = kwargs.get("testdev", False)
legacy = kwargs.get("legacy", False)
return COCODataset(
data_dir=self.data_dir,
json_file=self.val_ann if not testdev else self.test_ann,
name="val2017" if not testdev else "test2017",
img_size=self.test_size,
preproc=ValTransform(legacy=legacy),
)
def get_eval_loader(self, batch_size, is_distributed, **kwargs):
valdataset = self.get_eval_dataset(**kwargs)
if is_distributed:
batch_size = batch_size // dist.get_world_size()
sampler = torch.utils.data.distributed.DistributedSampler(
valdataset, shuffle=False
)
else:
sampler = torch.utils.data.SequentialSampler(valdataset)
dataloader_kwargs = {
"num_workers": self.data_num_workers,
"pin_memory": True,
"sampler": sampler,
}
dataloader_kwargs["batch_size"] = batch_size
val_loader = torch.utils.data.DataLoader(valdataset, **dataloader_kwargs)
return val_loader
def get_evaluator(self, batch_size, is_distributed, testdev=False, legacy=False):
from yolox.evaluators import COCOEvaluator
return COCOEvaluator(
dataloader=self.get_eval_loader(batch_size, is_distributed,
testdev=testdev, legacy=legacy),
img_size=self.test_size,
confthre=self.test_conf,
nmsthre=self.nmsthre,
num_classes=self.num_classes,
testdev=testdev,
)
def get_trainer(self, args):
from yolox.core import Trainer
trainer = Trainer(self, args)
# NOTE: trainer shouldn't be an attribute of exp object
return trainer
def eval(self, model, evaluator, is_distributed, half=False, return_outputs=False):
return evaluator.evaluate(model, is_distributed, half, return_outputs=return_outputs)
def check_exp_value(exp: Exp):
h, w = exp.input_size
assert h % 32 == 0 and w % 32 == 0, "input size must be multiples of 32"
|