Spaces:
Runtime error
Runtime error
File size: 27,045 Bytes
0b7b08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
import torch
import torchvision
from einops import rearrange
from torch import nn
from yolox.models.yolo_head import YOLOXHead
from yolox.utils.boxes import xyxy2cxcywh, cxcywh2xyxy
from yolox.utils.demo_utils import nms
# import matplotlib.pyplot as plt
# import seaborn as sns
import numpy as np
import logging
from open_flamingo.src.gcn import GCN
from transformers import LogitsProcessorList
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s %(message)s',
datefmt='%m/%d %I:%M:%S',
)
# class PositionEncodingModule(nn.Module):
# def __init__(self, dim, pos_dim=128):
# super().__init__()
# self.encode = nn.Sequential(
# nn.Linear(5, pos_dim // 2),
# nn.BatchNorm1d(pos_dim // 2),
# nn.GELU(),
# nn.Linear(pos_dim // 2, pos_dim),
# nn.BatchNorm1d(pos_dim),
# nn.GELU(),
# )
# self.merge = nn.Sequential(
# nn.Linear(dim + pos_dim, dim),
# nn.BatchNorm1d(dim),
# nn.GELU(),
# )
# def forward(self, x, box):
# box = self.encode(box)
# x = torch.cat([x, box], dim=-1)
# x = self.merge(x)
# return x
# class PositionEncodingModule(nn.Module):
# def __init__(self, dim):
# super().__init__()
# self.encode = nn.Sequential(
# nn.Linear(5, dim),
# nn.GELU(),
# )
# def forward(self, x, box):
# box = self.encode(box)
# x = x + box
# return x
# class PositionEncodingModule2(nn.Module):
# def __init__(self, dim):
# super().__init__()
# self.encode = nn.Sequential(
# nn.Linear(5 + dim, dim),
# nn.ELU(),
# )
# def forward(self, x, box):
# x = torch.cat([x, box], dim=-1)
# x = self.encode(x)
# return x
# class RelationHead(nn.Module):
# def __init__(self, dim):
# super().__init__()
# self.encode = nn.Sequential(
# nn.LayerNorm(dim),
# nn.Linear(dim, 128),
# nn.ELU(),
# )
# self.classifier = nn.Linear(256, 51)
# def forward(self, x1, x2):
# x1 = self.encode(x1)
# x2 = self.encode(x2)
# x = torch.cat([x1, x2], dim=-1)
# x = self.classifier(x)
# return x
class Flamingo(nn.Module):
def __init__(
self,
vision_encoder: nn.Module,
lang_encoder: nn.Module,
eoc_token_id: int,
media_token_id: int,
image_end_token_id: int,
visual_token_id: int,
previsual_token_id: int,
box_token_id: int,
prebox_token_id: int,
nothing_token_id: int,
endofobject_token_id: int,
vis_dim: int,
vis_embed_size: int,
lang_dim: int,
hidden_state_dim: int,
image_size: int,
patch_size: int,
use_media_placement_augmentation: bool = False,
add_visual_token: bool = False,
add_pe: bool = False,
add_relation: bool = False,
use_format_v2: bool = False,
roi_align: bool = False,
roi_output_size: int = 4,
apply_mask: bool = False,
):
"""
Args:
vision_encoder (nn.Module): HF CLIPModel
lang_encoder (nn.Module): HF causal language model
eoc_token_id (int): Token id for eos token
media_token_id (int): Token id for <|#image#|>
vis_dim (int): Dimension of the visual features.
Visual features are projected to match this shape along the last dimension.
cross_attn_every_n_layers (int, optional): How often to apply cross attention after transformer layer. Defaults to 1.
use_media_placement_augmentation (bool, optional): Whether to randomly assign images to the preceding or following text in training. Defaults to False.
"""
super().__init__()
self.image_end_token_id = image_end_token_id
self.eoc_token_id = eoc_token_id
self.media_token_id = media_token_id
self.use_media_placement_augmentation = use_media_placement_augmentation
self.vis_dim = vis_dim
self.lang_dim = lang_dim
# inner_dim = self.lang_dim * 4
# self.vis_proj = nn.Sequential(
# nn.LayerNorm(self.vis_dim),
# nn.Linear(self.vis_dim, inner_dim, bias=False),
# nn.GELU(),
# nn.Linear(inner_dim, self.lang_dim, bias=False),
# )
self.vis_proj = nn.Linear(self.vis_dim, self.lang_dim)
self.vision_encoder = vision_encoder
self.num_positions = vis_embed_size
self.lang_encoder = lang_encoder
self.lang_encoder.init_flamingo(
media_token_id=media_token_id,
use_media_placement_augmentation=self.use_media_placement_augmentation,
)
first_layer = self.lang_encoder._get_decoder_layers()[0]
first_layer.add_visual_token = add_visual_token
first_layer.visual_token_id = visual_token_id
first_layer.media_token_id = media_token_id
first_layer.box_token_id = box_token_id
# first_layer.pos_enc = PositionEncodingModule(self.lang_dim) if add_pe else None
# assert not (add_pe and add_relation)
# self.pos_enc = PositionEncodingModule(self.lang_dim) if add_pe else None
# first_layer.pos_enc = self.pos_enc
self.box_token_id = box_token_id
self.prebox_token_id = prebox_token_id
self.media_token_id = media_token_id
self.visual_token_id = visual_token_id
self.previsual_token_id = previsual_token_id
self.hidden_state_dim = hidden_state_dim
self.image_size = image_size
self.patch_size = patch_size
self.patch_num = self.image_size // self.patch_size
self.detection_head = YOLOXHead(
num_classes=1,
strides=[patch_size],
in_channels=[self.hidden_state_dim + self.lang_dim],
)
self.use_format_v2 = use_format_v2
self.nothing_token_id = nothing_token_id
self.roi_align = roi_align
self.roi_output_size = roi_output_size if roi_align else None
self.apply_mask = apply_mask
self.endofobject_token_id = endofobject_token_id
def _get_detection_batch(
self,
visual_token_id,
previsual_token_id,
input_ids: torch.Tensor,
hidden_states: torch.Tensor,
added_bbox_list,
box_num = 100,
):
select_mask = torch.logical_or(input_ids == visual_token_id, input_ids == previsual_token_id)
visual_token_position = select_mask.nonzero()
visual_token_hidden_states = hidden_states[select_mask]
prev_batch_idx = -1
media_idx = []
cnt = 0
assert len(visual_token_hidden_states) == len(visual_token_position)
if len(added_bbox_list) != len(visual_token_position):
msg = f"ERROR: {len(added_bbox_list)}:{len(visual_token_position)}\n{added_bbox_list}\n{visual_token_position}"
logging.info(msg)
alpha = 0.0
else:
alpha = 1.0
visual_batches = []
previsual_batches = []
for (batch_idx, idx), visual_token_hidden_state, bbox in zip(
visual_token_position, visual_token_hidden_states, added_bbox_list,
):
# ! VERY IMPORTANT BUG !
bbox = bbox.clone()
# ! VERY IMPORTANT BUG !
batch_idx = batch_idx.item()
idx = idx.item()
if batch_idx != prev_batch_idx:
prev_batch_idx = batch_idx
this_input_ids = input_ids[batch_idx]
cnt += len(media_idx)
media_idx = (this_input_ids == self.media_token_id).nonzero().reshape(-1).tolist()
for i in range(len(media_idx)):
if i == len(media_idx) - 1 or idx > media_idx[i] and idx < media_idx[i+1]:
break
image_index = cnt + i
size = int(self.image_embedding[image_index].shape[0] ** 0.5)
image_embedding = self.image_embedding[image_index]
# inplace xyxy2cxcywh
# print(bbox)
# TODO: CHECK self.image_size. Is it 224?
bbox = xyxy2cxcywh(bbox) * self.image_size
# print(bbox)
concat_image_visual_embedding = torch.cat([image_embedding, visual_token_hidden_state.unsqueeze(0).repeat(image_embedding.shape[0], 1)], dim=-1).reshape(size, size, -1)
label = torch.cat([torch.zeros(bbox.shape[0], 1, device=bbox.device), bbox], dim=-1)
label = torch.cat([label, torch.zeros(box_num - label.shape[0], label.shape[1], device=label.device)], dim=0)
if input_ids[batch_idx, idx] == previsual_token_id:
previsual_batches.append([concat_image_visual_embedding, label])
elif input_ids[batch_idx, idx] == visual_token_id:
visual_batches.append([concat_image_visual_embedding, label])
else:
logging.info(f"WARNING... NOT visual nor previsual. it is {input_ids[batch_idx, idx]}")
return visual_batches, previsual_batches, alpha, alpha
def get_detection_losses(
self,
input_ids: torch.Tensor,
hidden_states: torch.Tensor,
added_bbox_list,
box_num = 100,
):
visual_token_batches, previsual_token_batches, alpha1, alpha2 = self._get_detection_batch(
visual_token_id=self.visual_token_id,
previsual_token_id=self.previsual_token_id,
input_ids=input_ids,
hidden_states=hidden_states,
added_bbox_list=added_bbox_list,
box_num=box_num,
)
loss_dict = []
for batches, alpha in zip([visual_token_batches, previsual_token_batches], [alpha1, alpha2]):
# x: [B, C, H, W]
if len(batches) != 0:
x = torch.cat([batch[0].unsqueeze(0) for batch in batches], dim=0).permute(0,3,1,2)
labels = torch.cat([batch[1].unsqueeze(0) for batch in batches], dim=0)
else:
x = None
labels = None
if x is not None:
losses = self.detection_head(xin=[x], labels=labels)
loss, loss_iou, loss_obj, loss_cls, loss_l1, _ = losses
else:
loss = torch.tensor(0.0).cuda()
loss_iou = loss
loss_obj = loss
loss_cls = loss
loss_l1 = loss
loss_dict.append(dict(
loss=loss * alpha,
loss_iou=loss_iou * alpha,
loss_obj=loss_obj * alpha,
loss_cls=loss_cls * alpha,
loss_l1=loss_l1 * alpha,
))
ret_loss = {}
for key in loss_dict[0].keys():
ret_loss[key] = 0.0
for d in loss_dict:
ret_loss[key] += d[key]
return ret_loss, loss_dict
def get_detection_result(
self,
input_ids: torch.Tensor,
hidden_states: torch.Tensor,
nms_thr: float = 0.45,
score_thr: float = 0.01,
debug_id: int = 0,
debug_mode: bool = False,
):
assert len(input_ids) == 1, "only batch size = 1 is supported yet"
# assert len(self.image_embedding) == 1, "only one image is supported yet"
# assert (input_ids[..., -1] == self.visual_token_id).all(), "the last token should be visual token"
visual_token_hidden_state = hidden_states[..., -1, :]
boxes_list = []
scores_list = []
for image_embedding in self.image_embedding:
size = int(image_embedding.shape[0] ** 0.5)
x = torch.cat([image_embedding, visual_token_hidden_state.repeat(image_embedding.shape[0], 1)], dim=-1).reshape(size, size, -1).unsqueeze(0).permute(0,3,1,2)
with torch.no_grad():
outputs = self.detection_head(xin=[x], labels=None)
boxes = outputs[0,:,:4].cpu().numpy()
scores = outputs[0,:,4].cpu().numpy()
scores_mask = scores > score_thr
boxes = boxes[scores_mask]
boxes = cxcywh2xyxy(boxes)
scores = scores[scores_mask]
keep = nms(boxes, scores, nms_thr=nms_thr)
boxes = boxes[keep]
scores = scores[keep]
if debug_mode:
obj_heatmap = outputs[0,:, -2].reshape(size, size).cpu().numpy()
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure()
sns_plot = sns.heatmap(obj_heatmap)
plt.savefig(f"heatmap_{debug_id}.jpg")
debug_id += 1
boxes_list.append(boxes)
scores_list.append(scores)
if len(boxes_list) == 1:
boxes_list = boxes_list[0]
scores_list = scores_list[0]
return boxes_list, scores_list
def _condition_attention(self, loc_list = None):
for i in range(len(self.lang_encoder.gpt_neox.layers)):
self.lang_encoder.gpt_neox.layers[i].decoder_layer.attention.loc_list = loc_list
def forward(
self,
vision_x: torch.Tensor,
lang_x: torch.Tensor,
attention_mask: torch.Tensor = None,
labels: torch.Tensor = None,
use_cached_vision_x: bool = False,
clear_conditioned_layers: bool = True,
past_key_values=None,
use_cache: bool = False,
image_nums=None,
image_start_index_list=None,
added_bbox_list=None,
add_box: bool = False,
relations=None,
debug_mode: bool = False,
):
"""
Forward pass of Flamingo.
Args:
vision_x (torch.Tensor): Vision input
shape (B, T_img, F, C, H, W) with F=1
lang_x (torch.Tensor): Language input ids
shape (B, T_txt)
attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
labels (torch.Tensor, optional): Labels. Defaults to None.
clear_conditioned_layers: if True, clear the conditioned layers
once the foward pass is completed. Set this to false if the
same set of images will be reused in another subsequent
forward pass.
past_key_values: pre-computed values to pass to language model.
See past_key_values documentation in Hugging Face
CausalLM models.
use_cache: whether to use cached key values. See use_cache
documentation in Hugging Face CausalLM models.
"""
self.valid = True
self.lang_encoder.loc_list = None
if use_cached_vision_x:
# Case: use cached; vision_x should be cached and other
# vision-related inputs should not be provided.
assert (
vision_x is None
), "Expect vision_x to be None when use_cached_vision_x is True."
assert self.lang_encoder.is_conditioned()
else:
# Case: do not use caching (i.e. this is a standard forward pass);
self._encode_vision_x(
vision_x=vision_x,
image_nums=image_nums,
image_start_index_list=image_start_index_list,
added_bbox_list=added_bbox_list if add_box else None,
input_ids=lang_x,
relations=relations,
)
if self.apply_mask:
if self.roi_align:
attend_length = 1 + self.roi_output_size ** 2
else:
attend_length = 2
prebox_loc = (lang_x == self.prebox_token_id).nonzero()
loc_list = []
for (x, y) in prebox_loc:
x = x.item()
y = y.item()
for yy in range(y+1, lang_x.shape[1]):
if lang_x[x, yy] == self.endofobject_token_id:
# [batch_idx, [previsual:prebox], [object:endofobject-1]]
loc_list.append([x, [y-attend_length+1, y], [y+1, yy-1]])
self._condition_attention(loc_list=loc_list)
else:
self._condition_attention(None)
output = self.lang_encoder(
input_ids=lang_x,
attention_mask=attention_mask,
labels=labels,
past_key_values=past_key_values,
use_cache=use_cache,
output_hidden_states=True,
)
if vision_x is None:
output['loss'][0] += 0.0 * self.vis_proj(self.vision_encoder.visual(torch.randn(1, 3, 224, 224, device=lang_x.device, dtype=output['loss'].dtype))[1]).mean()
hidden_states = output["hidden_states"][-1]
if self.training and added_bbox_list is not None:
detection_losses, loss_dict = self.get_detection_losses(
input_ids=lang_x,
hidden_states=hidden_states,
added_bbox_list=added_bbox_list,
)
output["detection_losses"] = detection_losses
output["loss_dict"] = loss_dict
elif labels is None:
boxes, scores = self.get_detection_result(
input_ids=lang_x,
hidden_states=hidden_states,
debug_id=self.debug_id if hasattr(self, "debug_id") else None,
debug_mode=debug_mode,
)
output["boxes"] = boxes
output["scores"] = scores
if clear_conditioned_layers:
self.lang_encoder.clear_conditioned_layers()
self._condition_attention(None)
return output
def generate(
self,
vision_x: torch.Tensor,
lang_x: torch.Tensor,
attention_mask: torch.Tensor = None,
added_bbox_list=None,
num_beams=1,
max_new_tokens=None,
temperature=1.0,
top_k=0,
top_p=1.0,
no_repeat_ngram_size=0,
prefix_allowed_tokens_fn=None,
length_penalty=1.0,
num_return_sequences=1,
do_sample=False,
early_stopping=False,
bad_words_ids=None,
force_words_ids=None,
image_start_index_list=None,
image_nums=None,
min_length=None,
return_dict_in_generate=False,
output_hidden_states=False,
output_scores=False,
logits_processor_list=None,
eos_token_id=None,
):
"""
Generate text conditioned on vision and language inputs.
Args:
vision_x (torch.Tensor): Vision input
shape (B, T_img, F, C, H, W)
images in the same chunk are collated along T_img, and frames are collated along F
currently only F=1 is supported (single-frame videos)
lang_x (torch.Tensor): Language input
shape (B, T_txt)
max_length (int, optional): Maximum length of the output. Defaults to None.
attention_mask (torch.Tensor, optional): Attention mask. Defaults to None.
num_beams (int, optional): Number of beams. Defaults to 1.
max_new_tokens (int, optional): Maximum new tokens. Defaults to None.
temperature (float, optional): Temperature. Defaults to 1.0.
top_k (int, optional): Top k. Defaults to 0.
top_p (float, optional): Top p. Defaults to 1.0.
no_repeat_ngram_size (int, optional): No repeat ngram size. Defaults to 0.
length_penalty (float, optional): Length penalty. Defaults to 1.0.
num_return_sequences (int, optional): Number of return sequences. Defaults to 1.
do_sample (bool, optional): Do sample. Defaults to False.
early_stopping (bool, optional): Early stopping. Defaults to False.
Returns:
torch.Tensor: lang_x with generated tokens appended to it
"""
if num_beams > 1:
vision_x = vision_x.repeat_interleave(num_beams, dim=0)
image_start_index_list = torch.tensor(image_start_index_list).repeat_interleave(num_beams, dim=0).tolist()
image_nums = torch.tensor(image_nums).repeat_interleave(num_beams, dim=0).tolist()
if added_bbox_list is not None and len(added_bbox_list) != 0:
added_bbox_list = added_bbox_list * num_beams
self._encode_vision_x(vision_x=vision_x, image_nums=image_nums, image_start_index_list=image_start_index_list, num_beams=num_beams, added_bbox_list=added_bbox_list, input_ids=lang_x.repeat_interleave(num_beams, dim=0))
if logits_processor_list is not None:
assert isinstance(logits_processor_list, list)
logits_processor_list = LogitsProcessorList(logits_processor_list)
output = self.lang_encoder.generate(
input_ids=lang_x,
attention_mask=attention_mask,
eos_token_id=(self.eoc_token_id) if eos_token_id is None else eos_token_id,
num_beams=num_beams,
max_new_tokens=max_new_tokens,
min_length=min_length,
length_penalty=length_penalty,
logits_processor=logits_processor_list,
return_dict_in_generate=return_dict_in_generate,
output_scores=output_scores,
)
self.lang_encoder.clear_conditioned_layers()
return output
def _get_data_list_and_visual_tokens(
self,
all_box_list,
box_token_id,
prebox_token_id,
input_ids,
vision_x,
nothing_embedding = None,
):
box_locations = (torch.logical_or(input_ids == box_token_id, input_ids == prebox_token_id)).nonzero()
prev_batch_idx = -1
media_idx = []
cnt = 0
data_list = []
visual_tokens = []
if len(all_box_list) != len(box_locations):
logging.info(f"WARNING. len(all_box_list) != len(box_locations) {len(all_box_list)} vs {len(box_locations)}")
self.valid = False
for III, (batch_idx, idx) in enumerate(box_locations):
batch_idx = batch_idx.item()
idx = idx.item()
if batch_idx != prev_batch_idx:
prev_batch_idx = batch_idx
this_input_ids = input_ids[batch_idx]
cnt += len(media_idx)
media_idx = (this_input_ids == self.media_token_id).nonzero().reshape(-1).tolist()
for i in range(len(media_idx)):
if i == len(media_idx) - 1 or idx > media_idx[i] and idx < media_idx[i+1]:
break
image_index = cnt + i
size = int(vision_x[image_index].shape[0] ** 0.5)
image_feature = vision_x[image_index].reshape(size, size, -1)
try:
raw_xyxy = all_box_list[III]
except:
logging.info("out of scope for all_box_list")
raw_xyxy = all_box_list[-1]
region_xyxy = np.array(raw_xyxy) * size
x1, y1, x2, y2 = region_xyxy.astype(int).clip(0, size-1).tolist()
x2 = max(x1, x2)
y2 = max(y1, y2)
if x1 + y1 + x2 + y2 == 0.0 and nothing_embedding is not None:
visual_token = nothing_embedding
else:
if self.roi_align:
visual_token = torchvision.ops.roi_align(
image_feature.permute(2, 0, 1).unsqueeze(0),
[torch.tensor(region_xyxy.astype(np.float32)).unsqueeze(0).cuda()],
output_size=self.roi_output_size,
spatial_scale=1.0,
)
visual_token = visual_token.squeeze(0).flatten(1).permute(1, 0)
else:
visual_token = image_feature[y1:y2+1, x1:x2+1].reshape(-1, image_feature.shape[-1]).mean(0)
box = torch.tensor([0] + raw_xyxy, device=visual_token.device, dtype=visual_token.dtype)
data_list.append([visual_token, box, batch_idx, idx, i])
visual_tokens.append(visual_token)
return data_list, visual_tokens
def _encode_vision_x(self, vision_x: torch.Tensor, image_nums=None, image_start_index_list=None, added_bbox_list=None, num_beams=None, input_ids=None, relations=None):
"""
Compute media tokens from vision input by passing it through vision encoder and conditioning language model.
Args:
vision_x (torch.Tensor): Vision input
shape (B, T_img, F, C, H, W)
Images in the same chunk are collated along T_img, and frames are collated along F
Currently only F=1 is supported (single-frame videos)
rearrange code based on https://github.com/dhansmair/flamingo-mini
"""
assert vision_x.ndim == 6, "vision_x should be of shape (b, T_img, F, C, H, W)"
b, T, F = vision_x.shape[:3]
assert F == 1, "Only single frame supported"
vision_x = rearrange(vision_x, "b T F c h w -> (b T F) c h w")
if hasattr(self.vision_encoder, "visual"):
vision_x = self.vision_encoder.visual(vision_x)[1]
else:
vision_x = self.vision_encoder(vision_x).flatten(2).permute(0, 2, 1)
vision_x = rearrange(vision_x, "(b T F) v d -> b T F v d", b=b, T=T, F=F)
# print(vision_x[0,0,0])
# # DEBUG HERE
# if torch.distributed.get_rank() == 0:
# import pdb; pdb.set_trace()
# else:
# torch.distributed.barrier()
vision_x = vision_x.mean(2)
# vision_x = self.perceiver(vision_x) # reshapes to (b, T, n, d)
# vision_x = self.vis_proj(vision_x) + self.vis_position_embedding(self.vis_position_ids).unsqueeze(0)
vision_x = self.vis_proj(vision_x).squeeze(1)
self.image_embedding = vision_x
data_list = None
visual_tokens = None
if added_bbox_list is not None and input_ids is not None:
all_box_list = added_bbox_list[0].tolist()
for list in added_bbox_list[1:]:
all_box_list.extend(list.tolist())
data_list, visual_tokens = self._get_data_list_and_visual_tokens(
all_box_list=all_box_list,
box_token_id=self.box_token_id,
prebox_token_id=self.prebox_token_id,
input_ids=input_ids,
vision_x=vision_x,
nothing_embedding=self.lang_encoder.gpt_neox.embed_in(torch.tensor(self.nothing_token_id).to(self.lang_encoder.gpt_neox.embed_in.weight.device)) if self.nothing_token_id is not None else None,
)
first_layer = self.lang_encoder._get_decoder_layers()[0]
first_layer.condition_vis_x(vision_x, image_nums, image_start_index_list, num_beams=num_beams, visual_tokens=visual_tokens, data_list=[[d[2], d[3]] for d in data_list] if data_list is not None else data_list)
|