File size: 4,237 Bytes
0b7b08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter
import math
from torch.autograd import Variable
from torchvision.ops import box_iou



class GraphConvolution(nn.Module):
    """
    Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
    """

    def __init__(self, in_features, out_features, bias=True, skip=True):
        super(GraphConvolution, self).__init__()
        self.skip = skip
        self.in_features = in_features
        self.out_features = out_features
        self.weight = Parameter(torch.Tensor(in_features, out_features))
        if bias:
            self.bias = Parameter(torch.Tensor(out_features))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self):
        stdv = 1. / math.sqrt(self.weight.size(1))
        self.weight.data.uniform_(-stdv, stdv)
        if self.bias is not None:
            self.bias.data.uniform_(-stdv, stdv)

    def forward(self, input, adj):
        # TODO make fc more efficient via "pack_padded_sequence"
        # import ipdb; ipdb.set_trace()
        support = torch.bmm(input, self.weight.unsqueeze(
            0).expand(input.shape[0], -1, -1))
        output = torch.bmm(adj, support)
        #output = SparseMM(adj)(support)
        if self.bias is not None:
            output += self.bias.unsqueeze(0).expand(input.shape[0], -1, -1)
        if self.skip:
            output += support

        return output

    def __repr__(self):
        return self.__class__.__name__ + ' (' \
            + str(self.in_features) + ' -> ' \
            + str(self.out_features) + ')'


class GCN_sim(nn.Module):
    def __init__(self, dim_in, dim_hidden, dim_out, dropout, num_layers):
        super(GCN_sim, self).__init__()
        assert num_layers >= 1
        self.fc_k = nn.Linear(dim_in, dim_hidden)
        self.fc_q = nn.Linear(dim_in, dim_hidden)

        dim_hidden = dim_out if num_layers == 1 else dim_hidden
        self.gcs = nn.ModuleList([
            GraphConvolution(dim_in, dim_hidden)
        ])

        for i in range(num_layers - 1):
            dim_tmp = dim_out if i == num_layers-2 else dim_hidden
            self.gcs.append(GraphConvolution(dim_hidden, dim_tmp))

        self.dropout = dropout

    def construct_graph(self, x, length):
        # TODO make fc more efficient via "pack_padded_sequence"
        emb_k = self.fc_k(x)
        emb_q = self.fc_q(x)

        s = torch.bmm(emb_k, emb_q.transpose(1, 2))

        s_mask = s.data.new(*s.size()).fill_(1).bool()  # [B, T1, T2]
        # Init similarity mask using lengths
        for i, (l_1, l_2) in enumerate(zip(length, length)):
            s_mask[i][:l_1, :l_2] = 0
        s_mask = Variable(s_mask)
        s.data.masked_fill_(s_mask.data, -float("inf"))

        a_weight = F.softmax(s, dim=2)  # [B, t1, t2]
        # remove nan from softmax on -inf
        a_weight.data.masked_fill_(a_weight.data != a_weight.data, 0)

        return a_weight

    def forward(self, x, length):
        adj_sim = self.construct_graph(x, length)

        for gc in self.gcs:
            x = F.relu(gc(x, adj_sim))
            x = F.dropout(x, self.dropout, training=self.training)

        return x


class GCN(nn.Module):
    def __init__(self, dim_in, dim_hidden, dim_out, dropout, mode, skip, num_layers, ST_n_next=None):
        super(GCN, self).__init__()
        assert len(mode) != 0
        self.mode = mode
        self.skip = skip

        if "GCN_sim" in mode:
            self.GCN_sim = GCN_sim(
                dim_in, dim_hidden, dim_out, dropout, num_layers)

    def forward(self, x, length):

        out = []
        if "GCN_sim" in self.mode:
            out.append(self.GCN_sim(x, length))

        out = sum(out)
        if self.skip:
            out += x

        return out


if __name__ == '__main__':
    model = GCN(512, 128, 512, 0.5, mode=[
                "GCN_sim"], skip=True, num_layers=3, ST_n_next=3)
    bs, T, N = 10, 5, 10
    n_node = T*N

    input = torch.rand(bs, n_node, 512)
    length = torch.ones((bs))
    length = length.type(torch.IntTensor)
    bboxes = torch.rand((bs, 5, 10, 4))

    output = model(input, length)