Spaces:
Runtime error
Runtime error
File size: 12,704 Bytes
a1d409e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# coding=utf-8
# Copyright 2021 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers import is_flax_available
from transformers.testing_utils import require_flax
from ..test_modeling_flax_common import ids_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.generation import (
FlaxForcedBOSTokenLogitsProcessor,
FlaxForcedEOSTokenLogitsProcessor,
FlaxLogitsProcessorList,
FlaxMinLengthLogitsProcessor,
FlaxTemperatureLogitsWarper,
FlaxTopKLogitsWarper,
FlaxTopPLogitsWarper,
)
@require_flax
class LogitsProcessorTest(unittest.TestCase):
def _get_uniform_logits(self, batch_size: int, length: int):
scores = jnp.ones((batch_size, length)) / length
return scores
def test_temperature_dist_warper(self):
input_ids = None
length = 20
scores = self._get_uniform_logits(batch_size=2, length=length)
# tweak scores to not be uniform anymore
scores = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch
scores = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch
# compute softmax
probs = jax.nn.softmax(scores, axis=-1)
temp_dist_warper_sharper = FlaxTemperatureLogitsWarper(temperature=0.5)
temp_dist_warper_smoother = FlaxTemperatureLogitsWarper(temperature=1.3)
warped_prob_sharp = jax.nn.softmax(temp_dist_warper_sharper(input_ids, scores.copy(), cur_len=None), axis=-1)
warped_prob_smooth = jax.nn.softmax(temp_dist_warper_smoother(input_ids, scores.copy(), cur_len=None), axis=-1)
# uniform distribution stays uniform
self.assertTrue(jnp.allclose(probs[0, :], warped_prob_sharp[0, :], atol=1e-3))
self.assertTrue(jnp.allclose(probs[0, :], warped_prob_smooth[0, :], atol=1e-3))
# sharp peaks get higher, valleys get lower
self.assertLess(probs[1, :].max(), warped_prob_sharp[1, :].max())
self.assertGreater(probs[1, :].min(), warped_prob_sharp[1, :].min())
# smooth peaks get lower, valleys get higher
self.assertGreater(probs[1, :].max(), warped_prob_smooth[1, :].max())
self.assertLess(probs[1, :].min(), warped_prob_smooth[1, :].min())
def test_top_k_dist_warper(self):
input_ids = None
vocab_size = 10
batch_size = 2
# create ramp distribution
ramp_logits = np.broadcast_to(np.arange(vocab_size)[None, :], (batch_size, vocab_size)).copy()
ramp_logits[1:, : vocab_size // 2] = ramp_logits[1:, : vocab_size // 2] + vocab_size
top_k_warp = FlaxTopKLogitsWarper(3)
scores = top_k_warp(input_ids, ramp_logits, cur_len=None)
# check that correct tokens are filtered
self.assertListEqual(jnp.isinf(scores[0]).tolist(), 7 * [True] + 3 * [False])
self.assertListEqual(jnp.isinf(scores[1]).tolist(), 2 * [True] + 3 * [False] + 5 * [True])
# check special case
length = 5
top_k_warp_safety_check = FlaxTopKLogitsWarper(top_k=1, filter_value=0.0, min_tokens_to_keep=3)
ramp_logits = np.broadcast_to(np.arange(length)[None, :], (batch_size, length)).copy()
scores = top_k_warp_safety_check(input_ids, ramp_logits, cur_len=None)
# min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
self.assertListEqual((scores == 0.0).sum(axis=-1).tolist(), [2, 2])
def test_top_p_dist_warper(self):
input_ids = None
vocab_size = 10
batch_size = 2
# create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
dist = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]]))
top_p_warp = FlaxTopPLogitsWarper(0.8)
filtered_dist = np.exp(top_p_warp(input_ids, dist, cur_len=None))
# dist should be filtered to keep min num values so that sum is >= top_p
# exp (-inf) => 0
EXPECTED_FILTERED_DIST = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]])
self.assertTrue(np.allclose(filtered_dist, EXPECTED_FILTERED_DIST, atol=1e-3))
# check edge cases with negative and extreme logits
ramp_logits = np.broadcast_to(np.arange(vocab_size)[None, :], (batch_size, vocab_size)).copy() - (
vocab_size // 2
)
# make ramp_logits more extreme
ramp_logits[1] = ramp_logits[1] * 100.0
# make sure at least 2 tokens are kept
top_p_warp = FlaxTopPLogitsWarper(0.9, min_tokens_to_keep=2, filter_value=0.0)
filtered_dist = top_p_warp(input_ids, ramp_logits, cur_len=None)
# first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist(), [3, 2])
def test_min_length_dist_processor(self):
vocab_size = 20
batch_size = 4
eos_token_id = 0
min_dist_processor = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id)
# check that min length is applied at length 5
input_ids = ids_tensor((batch_size, 20), vocab_size=20)
cur_len = 5
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_before_min_length = min_dist_processor(input_ids, scores, cur_len=cur_len)
self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist(), 4 * [-float("inf")])
# check that min length is not applied anymore at length 15
scores = self._get_uniform_logits(batch_size, vocab_size)
cur_len = 15
scores_before_min_length = min_dist_processor(input_ids, scores, cur_len=cur_len)
self.assertFalse(jnp.isinf(scores_before_min_length).any())
def test_forced_bos_token_logits_processor(self):
vocab_size = 20
batch_size = 4
bos_token_id = 0
logits_processor = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=bos_token_id)
# check that all scores are -inf except the bos_token_id score
input_ids = ids_tensor((batch_size, 1), vocab_size=20)
cur_len = 1
scores = self._get_uniform_logits(batch_size, vocab_size)
scores = logits_processor(input_ids, scores, cur_len=cur_len)
self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all())
self.assertListEqual(scores[:, bos_token_id].tolist(), 4 * [0]) # score for bos_token_id shold be zero
# check that bos_token_id is not forced if current length is greater than 1
cur_len = 3
scores = self._get_uniform_logits(batch_size, vocab_size)
scores = logits_processor(input_ids, scores, cur_len=cur_len)
self.assertFalse(jnp.isinf(scores).any())
def test_forced_eos_token_logits_processor(self):
vocab_size = 20
batch_size = 4
eos_token_id = 0
max_length = 5
logits_processor = FlaxForcedEOSTokenLogitsProcessor(max_length=max_length, eos_token_id=eos_token_id)
# check that all scores are -inf except the eos_token_id when max_length is reached
input_ids = ids_tensor((batch_size, 4), vocab_size=20)
cur_len = 4
scores = self._get_uniform_logits(batch_size, vocab_size)
scores = logits_processor(input_ids, scores, cur_len=cur_len)
self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all())
self.assertListEqual(scores[:, eos_token_id].tolist(), 4 * [0]) # score for eos_token_id should be zero
# check that eos_token_id is not forced if max_length is not reached
cur_len = 3
scores = self._get_uniform_logits(batch_size, vocab_size)
scores = logits_processor(input_ids, scores, cur_len=cur_len)
self.assertFalse(jnp.isinf(scores).any())
def test_processor_list(self):
batch_size = 4
sequence_length = 10
vocab_size = 15
eos_token_id = 2
bos_token_id = 1
max_length = 15
# dummy input_ids and scores
input_ids = ids_tensor((batch_size, sequence_length), vocab_size)
input_ids_comp = input_ids.copy()
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_comp = scores.copy()
# instantiate all dist processors
temp_dist_warp = FlaxTemperatureLogitsWarper(temperature=0.5)
top_k_warp = FlaxTopKLogitsWarper(3)
top_p_warp = FlaxTopPLogitsWarper(0.8)
# instantiate all logits processors
min_dist_proc = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id)
bos_dist_proc = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=bos_token_id)
eos_dist_proc = FlaxForcedEOSTokenLogitsProcessor(max_length=max_length, eos_token_id=eos_token_id)
cur_len = 10
# no processor list
scores = temp_dist_warp(input_ids, scores, cur_len=cur_len)
scores = top_k_warp(input_ids, scores, cur_len=cur_len)
scores = top_p_warp(input_ids, scores, cur_len=cur_len)
scores = min_dist_proc(input_ids, scores, cur_len=cur_len)
scores = bos_dist_proc(input_ids, scores, cur_len=cur_len)
scores = eos_dist_proc(input_ids, scores, cur_len=cur_len)
# with processor list
processor = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]
)
scores_comp = processor(input_ids, scores_comp, cur_len=cur_len)
# scores should be equal
self.assertTrue(jnp.allclose(scores, scores_comp, atol=1e-3))
# input_ids should never be changed
self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist())
def test_processor_list_jitted(self):
batch_size = 4
sequence_length = 10
vocab_size = 15
eos_token_id = 2
bos_token_id = 1
max_length = 15
# dummy input_ids and scores
input_ids = ids_tensor((batch_size, sequence_length), vocab_size)
input_ids_comp = input_ids.copy()
scores = self._get_uniform_logits(batch_size, vocab_size)
scores_comp = scores.copy()
# instantiate all dist processors
temp_dist_warp = FlaxTemperatureLogitsWarper(temperature=0.5)
top_k_warp = FlaxTopKLogitsWarper(3)
top_p_warp = FlaxTopPLogitsWarper(0.8)
# instantiate all logits processors
min_dist_proc = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id)
bos_dist_proc = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=bos_token_id)
eos_dist_proc = FlaxForcedEOSTokenLogitsProcessor(max_length=max_length, eos_token_id=eos_token_id)
cur_len = 10
# no processor list
def run_no_processor_list(input_ids, scores, cur_len):
scores = temp_dist_warp(input_ids, scores, cur_len=cur_len)
scores = top_k_warp(input_ids, scores, cur_len=cur_len)
scores = top_p_warp(input_ids, scores, cur_len=cur_len)
scores = min_dist_proc(input_ids, scores, cur_len=cur_len)
scores = bos_dist_proc(input_ids, scores, cur_len=cur_len)
scores = eos_dist_proc(input_ids, scores, cur_len=cur_len)
return scores
# with processor list
def run_processor_list(input_ids, scores, cur_len):
processor = FlaxLogitsProcessorList(
[temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]
)
scores = processor(input_ids, scores, cur_len=cur_len)
return scores
jitted_run_no_processor_list = jax.jit(run_no_processor_list)
jitted_run_processor_list = jax.jit(run_processor_list)
scores = jitted_run_no_processor_list(input_ids, scores, cur_len)
scores_comp = jitted_run_processor_list(input_ids, scores_comp, cur_len)
# scores should be equal
self.assertTrue(jnp.allclose(scores, scores_comp, atol=1e-3))
# input_ids should never be changed
self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist())
|