File size: 12,704 Bytes
a1d409e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# coding=utf-8
# Copyright 2021 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers import is_flax_available
from transformers.testing_utils import require_flax

from ..test_modeling_flax_common import ids_tensor


if is_flax_available():
    import jax
    import jax.numpy as jnp

    from transformers.generation import (
        FlaxForcedBOSTokenLogitsProcessor,
        FlaxForcedEOSTokenLogitsProcessor,
        FlaxLogitsProcessorList,
        FlaxMinLengthLogitsProcessor,
        FlaxTemperatureLogitsWarper,
        FlaxTopKLogitsWarper,
        FlaxTopPLogitsWarper,
    )


@require_flax
class LogitsProcessorTest(unittest.TestCase):
    def _get_uniform_logits(self, batch_size: int, length: int):
        scores = jnp.ones((batch_size, length)) / length
        return scores

    def test_temperature_dist_warper(self):
        input_ids = None
        length = 20

        scores = self._get_uniform_logits(batch_size=2, length=length)

        # tweak scores to not be uniform anymore
        scores = scores.at[1, 5].set((1 / length) + 0.1)  # peak, 1st batch
        scores = scores.at[1, 10].set((1 / length) - 0.4)  # valley, 1st batch

        # compute softmax
        probs = jax.nn.softmax(scores, axis=-1)

        temp_dist_warper_sharper = FlaxTemperatureLogitsWarper(temperature=0.5)
        temp_dist_warper_smoother = FlaxTemperatureLogitsWarper(temperature=1.3)

        warped_prob_sharp = jax.nn.softmax(temp_dist_warper_sharper(input_ids, scores.copy(), cur_len=None), axis=-1)
        warped_prob_smooth = jax.nn.softmax(temp_dist_warper_smoother(input_ids, scores.copy(), cur_len=None), axis=-1)

        # uniform distribution stays uniform
        self.assertTrue(jnp.allclose(probs[0, :], warped_prob_sharp[0, :], atol=1e-3))
        self.assertTrue(jnp.allclose(probs[0, :], warped_prob_smooth[0, :], atol=1e-3))

        # sharp peaks get higher, valleys get lower
        self.assertLess(probs[1, :].max(), warped_prob_sharp[1, :].max())
        self.assertGreater(probs[1, :].min(), warped_prob_sharp[1, :].min())

        # smooth peaks get lower, valleys get higher
        self.assertGreater(probs[1, :].max(), warped_prob_smooth[1, :].max())
        self.assertLess(probs[1, :].min(), warped_prob_smooth[1, :].min())

    def test_top_k_dist_warper(self):
        input_ids = None
        vocab_size = 10
        batch_size = 2

        # create ramp distribution
        ramp_logits = np.broadcast_to(np.arange(vocab_size)[None, :], (batch_size, vocab_size)).copy()
        ramp_logits[1:, : vocab_size // 2] = ramp_logits[1:, : vocab_size // 2] + vocab_size

        top_k_warp = FlaxTopKLogitsWarper(3)

        scores = top_k_warp(input_ids, ramp_logits, cur_len=None)

        # check that correct tokens are filtered
        self.assertListEqual(jnp.isinf(scores[0]).tolist(), 7 * [True] + 3 * [False])
        self.assertListEqual(jnp.isinf(scores[1]).tolist(), 2 * [True] + 3 * [False] + 5 * [True])

        # check special case
        length = 5
        top_k_warp_safety_check = FlaxTopKLogitsWarper(top_k=1, filter_value=0.0, min_tokens_to_keep=3)

        ramp_logits = np.broadcast_to(np.arange(length)[None, :], (batch_size, length)).copy()
        scores = top_k_warp_safety_check(input_ids, ramp_logits, cur_len=None)

        # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
        self.assertListEqual((scores == 0.0).sum(axis=-1).tolist(), [2, 2])

    def test_top_p_dist_warper(self):
        input_ids = None
        vocab_size = 10
        batch_size = 2

        # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
        dist = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]]))

        top_p_warp = FlaxTopPLogitsWarper(0.8)
        filtered_dist = np.exp(top_p_warp(input_ids, dist, cur_len=None))

        # dist should be filtered to keep min num values so that sum is >= top_p
        # exp (-inf) => 0
        EXPECTED_FILTERED_DIST = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]])
        self.assertTrue(np.allclose(filtered_dist, EXPECTED_FILTERED_DIST, atol=1e-3))

        # check edge cases with negative and extreme logits
        ramp_logits = np.broadcast_to(np.arange(vocab_size)[None, :], (batch_size, vocab_size)).copy() - (
            vocab_size // 2
        )

        # make ramp_logits more extreme
        ramp_logits[1] = ramp_logits[1] * 100.0

        # make sure at least 2 tokens are kept
        top_p_warp = FlaxTopPLogitsWarper(0.9, min_tokens_to_keep=2, filter_value=0.0)
        filtered_dist = top_p_warp(input_ids, ramp_logits, cur_len=None)

        # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
        self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist(), [3, 2])

    def test_min_length_dist_processor(self):
        vocab_size = 20
        batch_size = 4
        eos_token_id = 0

        min_dist_processor = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id)

        # check that min length is applied at length 5
        input_ids = ids_tensor((batch_size, 20), vocab_size=20)
        cur_len = 5
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores_before_min_length = min_dist_processor(input_ids, scores, cur_len=cur_len)
        self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist(), 4 * [-float("inf")])

        # check that min length is not applied anymore at length 15
        scores = self._get_uniform_logits(batch_size, vocab_size)
        cur_len = 15
        scores_before_min_length = min_dist_processor(input_ids, scores, cur_len=cur_len)
        self.assertFalse(jnp.isinf(scores_before_min_length).any())

    def test_forced_bos_token_logits_processor(self):
        vocab_size = 20
        batch_size = 4
        bos_token_id = 0

        logits_processor = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=bos_token_id)

        # check that all scores are -inf except the bos_token_id score
        input_ids = ids_tensor((batch_size, 1), vocab_size=20)
        cur_len = 1
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores = logits_processor(input_ids, scores, cur_len=cur_len)
        self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all())
        self.assertListEqual(scores[:, bos_token_id].tolist(), 4 * [0])  # score for bos_token_id shold be zero

        # check that bos_token_id is not forced if current length is greater than 1
        cur_len = 3
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores = logits_processor(input_ids, scores, cur_len=cur_len)
        self.assertFalse(jnp.isinf(scores).any())

    def test_forced_eos_token_logits_processor(self):
        vocab_size = 20
        batch_size = 4
        eos_token_id = 0
        max_length = 5

        logits_processor = FlaxForcedEOSTokenLogitsProcessor(max_length=max_length, eos_token_id=eos_token_id)

        # check that all scores are -inf except the eos_token_id when max_length is reached
        input_ids = ids_tensor((batch_size, 4), vocab_size=20)
        cur_len = 4
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores = logits_processor(input_ids, scores, cur_len=cur_len)
        self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all())
        self.assertListEqual(scores[:, eos_token_id].tolist(), 4 * [0])  # score for eos_token_id should be zero

        # check that eos_token_id is not forced if max_length is not reached
        cur_len = 3
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores = logits_processor(input_ids, scores, cur_len=cur_len)
        self.assertFalse(jnp.isinf(scores).any())

    def test_processor_list(self):
        batch_size = 4
        sequence_length = 10
        vocab_size = 15
        eos_token_id = 2
        bos_token_id = 1
        max_length = 15

        # dummy input_ids and scores
        input_ids = ids_tensor((batch_size, sequence_length), vocab_size)
        input_ids_comp = input_ids.copy()

        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores_comp = scores.copy()

        # instantiate all dist processors
        temp_dist_warp = FlaxTemperatureLogitsWarper(temperature=0.5)
        top_k_warp = FlaxTopKLogitsWarper(3)
        top_p_warp = FlaxTopPLogitsWarper(0.8)

        # instantiate all logits processors
        min_dist_proc = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id)
        bos_dist_proc = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=bos_token_id)
        eos_dist_proc = FlaxForcedEOSTokenLogitsProcessor(max_length=max_length, eos_token_id=eos_token_id)

        cur_len = 10

        # no processor list
        scores = temp_dist_warp(input_ids, scores, cur_len=cur_len)
        scores = top_k_warp(input_ids, scores, cur_len=cur_len)
        scores = top_p_warp(input_ids, scores, cur_len=cur_len)
        scores = min_dist_proc(input_ids, scores, cur_len=cur_len)
        scores = bos_dist_proc(input_ids, scores, cur_len=cur_len)
        scores = eos_dist_proc(input_ids, scores, cur_len=cur_len)

        # with processor list
        processor = FlaxLogitsProcessorList(
            [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]
        )
        scores_comp = processor(input_ids, scores_comp, cur_len=cur_len)

        # scores should be equal
        self.assertTrue(jnp.allclose(scores, scores_comp, atol=1e-3))

        # input_ids should never be changed
        self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist())

    def test_processor_list_jitted(self):
        batch_size = 4
        sequence_length = 10
        vocab_size = 15
        eos_token_id = 2
        bos_token_id = 1
        max_length = 15

        # dummy input_ids and scores
        input_ids = ids_tensor((batch_size, sequence_length), vocab_size)
        input_ids_comp = input_ids.copy()

        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores_comp = scores.copy()

        # instantiate all dist processors
        temp_dist_warp = FlaxTemperatureLogitsWarper(temperature=0.5)
        top_k_warp = FlaxTopKLogitsWarper(3)
        top_p_warp = FlaxTopPLogitsWarper(0.8)

        # instantiate all logits processors
        min_dist_proc = FlaxMinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id)
        bos_dist_proc = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=bos_token_id)
        eos_dist_proc = FlaxForcedEOSTokenLogitsProcessor(max_length=max_length, eos_token_id=eos_token_id)

        cur_len = 10

        # no processor list
        def run_no_processor_list(input_ids, scores, cur_len):
            scores = temp_dist_warp(input_ids, scores, cur_len=cur_len)
            scores = top_k_warp(input_ids, scores, cur_len=cur_len)
            scores = top_p_warp(input_ids, scores, cur_len=cur_len)
            scores = min_dist_proc(input_ids, scores, cur_len=cur_len)
            scores = bos_dist_proc(input_ids, scores, cur_len=cur_len)
            scores = eos_dist_proc(input_ids, scores, cur_len=cur_len)
            return scores

        # with processor list
        def run_processor_list(input_ids, scores, cur_len):
            processor = FlaxLogitsProcessorList(
                [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]
            )
            scores = processor(input_ids, scores, cur_len=cur_len)
            return scores

        jitted_run_no_processor_list = jax.jit(run_no_processor_list)
        jitted_run_processor_list = jax.jit(run_processor_list)

        scores = jitted_run_no_processor_list(input_ids, scores, cur_len)
        scores_comp = jitted_run_processor_list(input_ids, scores_comp, cur_len)

        # scores should be equal
        self.assertTrue(jnp.allclose(scores, scores_comp, atol=1e-3))

        # input_ids should never be changed
        self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist())