File size: 21,873 Bytes
a1d409e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np
from parameterized import parameterized

from transformers import is_tf_available
from transformers.testing_utils import require_tf


if is_tf_available():
    import tensorflow as tf

    from transformers.generation import (
        TFForcedBOSTokenLogitsProcessor,
        TFForcedEOSTokenLogitsProcessor,
        TFForceTokensLogitsProcessor,
        TFLogitsProcessorList,
        TFMinLengthLogitsProcessor,
        TFNoBadWordsLogitsProcessor,
        TFNoRepeatNGramLogitsProcessor,
        TFRepetitionPenaltyLogitsProcessor,
        TFSuppressTokensAtBeginLogitsProcessor,
        TFSuppressTokensLogitsProcessor,
        TFTemperatureLogitsWarper,
        TFTopKLogitsWarper,
        TFTopPLogitsWarper,
    )

    from ..test_modeling_tf_common import ids_tensor


@require_tf
class TFLogitsProcessorTest(unittest.TestCase):
    def _get_uniform_logits(self, batch_size: int, length: int):
        scores = tf.ones((batch_size, length), dtype=tf.float32) / length
        return scores

    @parameterized.expand([(False,), (True,)])
    def test_min_length_dist_processor(self, use_xla):
        vocab_size = 20
        batch_size = 4
        eos_token_id = 0

        min_dist_processor = TFMinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id)
        if use_xla:
            min_dist_processor = tf.function(min_dist_processor, jit_compile=True)

        # check that min length is applied at length 5
        cur_len = 5
        input_ids = ids_tensor((batch_size, cur_len), vocab_size=20)
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores_before_min_length = min_dist_processor(input_ids, scores, cur_len)
        self.assertListEqual(scores_before_min_length[:, eos_token_id].numpy().tolist(), 4 * [-float("inf")])

        # check that min length is not applied anymore at length 15
        cur_len = 15
        input_ids = ids_tensor((batch_size, cur_len), vocab_size=20)
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores_before_min_length = min_dist_processor(input_ids, scores, cur_len)
        self.assertFalse(tf.math.reduce_any(tf.math.is_inf(scores_before_min_length)).numpy())

    @parameterized.expand([(False,), (True,)])
    def test_temperature_dist_warper(self, use_xla):
        input_ids = None
        cur_len = None
        length = 20

        scores = self._get_uniform_logits(batch_size=2, length=length)

        # tweak scores to not be uniform anymore
        scores = scores.numpy()
        scores[1, 5] = (1 / length) + 0.1  # peak, 1st batch
        scores[1, 10] = (1 / length) - 0.4  # valley, 1st batch
        scores = tf.convert_to_tensor(scores)

        # compute softmax
        probs = tf.nn.softmax(scores, axis=-1)

        temp_dist_warper_sharper = TFTemperatureLogitsWarper(temperature=0.5)
        temp_dist_warper_smoother = TFTemperatureLogitsWarper(temperature=1.3)
        if use_xla:
            temp_dist_warper_sharper = tf.function(temp_dist_warper_sharper, jit_compile=True)
            temp_dist_warper_smoother = tf.function(temp_dist_warper_smoother, jit_compile=True)

        warped_prob_sharp = tf.nn.softmax(temp_dist_warper_sharper(input_ids, tf.identity(scores), cur_len), axis=-1)
        warped_prob_smooth = tf.nn.softmax(temp_dist_warper_smoother(input_ids, tf.identity(scores), cur_len), axis=-1)

        # uniform distribution stays uniform
        tf.debugging.assert_near(probs[0, :], warped_prob_sharp[0, :], atol=1e-3)
        tf.debugging.assert_near(probs[0, :], warped_prob_smooth[0, :], atol=1e-3)

        # sharp peaks get higher, valleys get lower
        self.assertLess(tf.math.reduce_max(probs[1, :]), tf.math.reduce_max(warped_prob_sharp[1, :]))
        self.assertGreater(tf.math.reduce_min(probs[1, :]), tf.math.reduce_min(warped_prob_sharp[1, :]))

        # smooth peaks get lower, valleys get higher
        self.assertGreater(tf.math.reduce_max(probs[1, :]), tf.math.reduce_max(warped_prob_smooth[1, :]))
        self.assertLess(tf.math.reduce_min(probs[1, :]), tf.math.reduce_min(warped_prob_smooth[1, :]))

    @parameterized.expand([(False,), (True,)])
    def test_repetition_penalty_dist_process(self, use_xla):
        vocab_size = 10
        cur_len = 2

        input_ids = tf.constant([[0, 1], [5, 0]], dtype=tf.int32)
        self.assertEqual(cur_len, input_ids.shape[1])

        scores = self._get_uniform_logits(batch_size=2, length=vocab_size)

        mask = tf.cast(tf.constant([[1] + 9 * [0], 10 * [0]]), tf.bool)
        scores = tf.where(mask, -1 / vocab_size, scores)
        mask = tf.cast(tf.constant([10 * [0], 5 * [0] + [1] + 4 * [0]]), tf.bool)
        scores = tf.where(mask, 4 / vocab_size, scores)
        rep_penalty_proc = TFRepetitionPenaltyLogitsProcessor(penalty=2.0)
        if use_xla:
            rep_penalty_proc = tf.function(rep_penalty_proc, jit_compile=True)

        scores = rep_penalty_proc(input_ids, tf.identity(scores), cur_len)

        # check that values were correctly changed (negative scores for used tokens should increase, others
        # should decrease)
        self.assertAlmostEqual(scores[0, 0].numpy(), -(1 / vocab_size) * 2)
        self.assertAlmostEqual(scores[0, 1].numpy(), (1 / vocab_size) / 2)
        self.assertAlmostEqual(scores[0, 2].numpy(), (1 / vocab_size))  # unused tokens should see no change

        self.assertAlmostEqual(scores[1, 0].numpy(), (1 / vocab_size) / 2)
        self.assertAlmostEqual(scores[1, 5].numpy(), (4 / vocab_size) / 2)
        self.assertAlmostEqual(scores[0, 2].numpy(), (1 / vocab_size))  # unused tokens should see no change

    @parameterized.expand([(False,), (True,)])
    def test_top_k_dist_warper(self, use_xla):
        input_ids = None
        cur_len = None
        vocab_size = 10
        batch_size = 2

        # create ramp distribution
        ramp_logits = np.broadcast_to(np.arange(vocab_size, dtype=np.float32), (batch_size, vocab_size)).copy()
        ramp_logits[1:, : vocab_size // 2] = ramp_logits[1:, : vocab_size // 2] + vocab_size

        top_k_warp = TFTopKLogitsWarper(3)
        if use_xla:
            top_k_warp = tf.function(top_k_warp, jit_compile=True)

        scores = top_k_warp(input_ids, ramp_logits, cur_len)

        # check that correct tokens are filtered
        self.assertListEqual(tf.math.is_inf(scores[0]).numpy().tolist(), 7 * [True] + 3 * [False])
        self.assertListEqual(tf.math.is_inf(scores[1]).numpy().tolist(), 2 * [True] + 3 * [False] + 5 * [True])

        # check special cases
        length = 5

        logits = self._get_uniform_logits(batch_size=batch_size, length=length)
        top_k_warp_safety_check = TFTopKLogitsWarper(top_k=1, filter_value=0.0, min_tokens_to_keep=3)
        if use_xla:
            top_k_warp_safety_check = tf.function(top_k_warp_safety_check, jit_compile=True)

        scores = top_k_warp_safety_check(input_ids, logits, cur_len)
        # uniform dist is not changed
        self.assertListEqual(tf.math.reduce_sum(tf.where(scores == 0.0, 1, 0), axis=-1).numpy().tolist(), [0, 0])

        ramp_logits = np.broadcast_to(np.arange(length, dtype=np.float32), (batch_size, length)).copy()
        scores = top_k_warp_safety_check(input_ids, ramp_logits, cur_len)

        # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
        self.assertListEqual(tf.math.reduce_sum(tf.where(scores == 0.0, 1, 0), axis=-1).numpy().tolist(), [2, 2])

    @parameterized.expand([(False,), (True,)])
    def test_top_p_dist_warper(self, use_xla):
        input_ids = None
        cur_len = None
        vocab_size = 10
        batch_size = 2

        # create distribution and take log (inverse to Softmax as taken in TFTopPLogitsWarper)
        dist = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]], dtype=np.float32))

        # top_p should have been 0.8 to test the edge case of top_p being exactly equal to sum of some token prob
        # However, due to the numerical instability of softmax in TF we choose this as the edge case
        # top_p as 0.8 passes when use_xla is True and fails when False. Refer PR #18984.
        top_p_warp = TFTopPLogitsWarper(0.79999995)
        if use_xla:
            top_p_warp = tf.function(top_p_warp, jit_compile=True)
        filtered_dist = tf.exp(top_p_warp(input_ids, dist, cur_len))

        # dist should be filtered to keep min num values so that sum is >= top_p
        # exp (-inf) => 0
        EXPECTED_FILTERED_DIST = tf.constant([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]], dtype=tf.float32)
        tf.debugging.assert_near(filtered_dist, EXPECTED_FILTERED_DIST, atol=1e-3)

        # check edge cases with negative and extreme logits
        ramp_logits = np.broadcast_to(
            np.arange(vocab_size, dtype=np.float32)[None, :], (batch_size, vocab_size)
        ).copy() - (vocab_size // 2)

        # make ramp_logits more extreme
        ramp_logits[1] = ramp_logits[1] * 100.0

        # make sure at least 2 tokens are kept
        top_p_warp = TFTopPLogitsWarper(0.9, min_tokens_to_keep=2, filter_value=0.0)
        if use_xla:
            top_p_warp = tf.function(top_p_warp, jit_compile=True)
        filtered_dist = top_p_warp(input_ids, ramp_logits, cur_len)

        # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps
        # 2.
        self.assertListEqual(
            tf.math.reduce_sum(tf.where(filtered_dist != 0.0, 1, 0), axis=-1).numpy().tolist(), [3, 2]
        )

    def test_no_repeat_ngram_dist_processor(self):
        vocab_size = 3
        batch_size = 2
        cur_len = 4

        input_ids = tf.constant([[1, 1, 2, 1], [0, 1, 0, 1]], dtype=tf.int32)
        self.assertEqual(cur_len, input_ids.shape[1])

        scores = self._get_uniform_logits(batch_size, vocab_size)

        no_repeat_proc_2_gram = TFNoRepeatNGramLogitsProcessor(2)
        no_repeat_proc_3_gram = TFNoRepeatNGramLogitsProcessor(3)

        filtered_scores_2_gram = no_repeat_proc_2_gram(input_ids, tf.identity(scores), cur_len)
        filtered_scores_3_gram = no_repeat_proc_3_gram(input_ids, tf.identity(scores), cur_len)

        # 2-gram would forbid 2nd and 3rd token (1,2) at 1st batch and 1st token (0) at 2nd batch
        self.assertListEqual(
            tf.math.is_inf(filtered_scores_2_gram).numpy().tolist(), [[False, True, True], [True, False, False]]
        )

        # 3-gram would forbid no token at 1st batch and 1st token (0) at 2nd batch
        self.assertListEqual(
            tf.math.is_inf(filtered_scores_3_gram).numpy().tolist(), [[False, False, False], [True, False, False]]
        )

    @parameterized.expand([(False,), (True,)])
    def test_no_bad_words_dist_processor(self, use_xla):
        vocab_size = 5
        batch_size = 2
        eos_token_id = 4
        cur_len = 4

        input_ids = tf.constant([[0, 1, 3, 1], [0, 1, 0, 1]], dtype=tf.int32)
        self.assertEqual(cur_len, input_ids.shape[1])

        bad_word_tokens = [[1], [4], [1, 0], [0, 1, 2], [1, 3, 1, 3]]
        scores = self._get_uniform_logits(batch_size, vocab_size)

        no_bad_words_dist_proc = TFNoBadWordsLogitsProcessor(bad_words_ids=bad_word_tokens, eos_token_id=eos_token_id)
        if use_xla:
            no_bad_words_dist_proc = tf.function(no_bad_words_dist_proc, jit_compile=True)

        filtered_scores = no_bad_words_dist_proc(input_ids, tf.identity(scores), cur_len)

        # batch 1: 1st, 2nd, and 4th (0, 1, 3) token are forbidden
        # batch 2: 1st, 2nd, and 3rd (0, 1, 2) token are forbidden
        self.assertListEqual(
            tf.math.is_inf(filtered_scores).numpy().tolist(),
            [[True, True, False, True, True], [True, True, True, False, True]],
        )

    @parameterized.expand([(False,), (True,)])
    def test_forced_bos_token_logits_processor(self, use_xla):
        vocab_size = 20
        batch_size = 4
        bos_token_id = 0

        logits_processor = TFForcedBOSTokenLogitsProcessor(bos_token_id=bos_token_id)
        if use_xla:
            logits_processor = tf.function(logits_processor, jit_compile=True)

        # check that all scores are -inf except the bos_token_id score
        cur_len = 1
        input_ids = ids_tensor((batch_size, cur_len), vocab_size=20)
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores = logits_processor(input_ids, scores, cur_len)
        self.assertTrue(
            tf.math.reduce_all(tf.math.is_inf(scores[:, bos_token_id + 1 :]) & (scores[:, bos_token_id + 1 :] < 0))
        )
        self.assertListEqual(scores[:, bos_token_id].numpy().tolist(), 4 * [0])  # score for bos_token_id shold be zero

        # check that bos_token_id is not forced if current length is greater than 1
        cur_len = 4
        input_ids = ids_tensor((batch_size, cur_len), vocab_size=20)
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores = logits_processor(input_ids, scores, cur_len)
        self.assertFalse(tf.math.reduce_any(tf.math.is_inf((scores))))

    @parameterized.expand([(False,), (True,)])
    def test_forced_eos_token_logits_processor(self, use_xla):
        vocab_size = 20
        batch_size = 4
        eos_token_id = 0
        max_length = 5

        logits_processor = TFForcedEOSTokenLogitsProcessor(max_length=max_length, eos_token_id=eos_token_id)
        if use_xla:
            logits_processor = tf.function(logits_processor, jit_compile=True)

        # check that all scores are -inf except the eos_token_id when max_length-1 is reached
        cur_len = 4
        input_ids = ids_tensor((batch_size, cur_len), vocab_size=20)
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores = logits_processor(input_ids, scores, cur_len)
        self.assertTrue(
            tf.math.reduce_all(tf.math.is_inf(scores[:, eos_token_id + 1 :]) & (scores[:, eos_token_id + 1 :] < 0))
        )
        self.assertListEqual(
            scores[:, eos_token_id].numpy().tolist(), 4 * [0]
        )  # score for eos_token_id should be zero

        # check that eos_token_id is not forced if max_length-1 is not reached
        cur_len = 3
        input_ids = ids_tensor((batch_size, cur_len), vocab_size=20)
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores = logits_processor(input_ids, scores, cur_len)
        self.assertFalse(tf.math.reduce_any(tf.math.is_inf((scores))))

    @parameterized.expand([(False,), (True,)])
    def test_suppress_tokens_at_begin_logits_processor(self, use_xla):
        vocab_size = 20
        batch_size = 4

        begin_suppress_tokens = [1, 2, 3]
        begin_index = 5

        logits_processor = TFSuppressTokensAtBeginLogitsProcessor(
            begin_suppress_tokens=begin_suppress_tokens, begin_index=begin_index
        )
        if use_xla:
            logits_processor = tf.function(logits_processor, jit_compile=True)

        # Check that no scores are suppressed if begin_index is not reached
        cur_len = 4
        input_ids = tf.convert_to_tensor([[11, 17, 15, 8], [14, 0, 19, 5], [13, 11, 18, 19], [11, 12, 16, 15]])
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores = logits_processor(input_ids, scores, cur_len)
        self.assertFalse(tf.math.reduce_any(tf.math.is_inf((scores))))

        # Check that scores are suppressed if begin_index is reached
        cur_len = 5
        input_ids = tf.convert_to_tensor([[5, 5, 5, 0, 17], [18, 1, 9, 14, 17], [18, 6, 8, 15, 19], [8, 12, 17, 1, 2]])
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores = logits_processor(input_ids, scores, cur_len)
        self.assertTrue(tf.math.reduce_all(tf.math.is_inf(tf.gather(scores, begin_suppress_tokens, axis=1))))

    @parameterized.expand([(False,), (True,)])
    def test_suppress_tokens_logits_processor(self, use_xla):
        vocab_size = 20
        batch_size = 4

        suppress_tokens = [1, 3, 5]
        keep_tokens = [i for i in range(vocab_size) if i not in suppress_tokens]

        logits_processor = TFSuppressTokensLogitsProcessor(suppress_tokens=suppress_tokens)
        if use_xla:
            logits_processor = tf.function(logits_processor, jit_compile=True)

        # Check that suppress_tokens are suppressed and others are not
        cur_len = 5
        input_ids = tf.convert_to_tensor([[0, 10, 19, 6, 3], [17, 4, 8, 17, 2], [7, 1, 11, 6, 15], [5, 8, 13, 16, 0]])
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores = logits_processor(input_ids, scores, cur_len)
        self.assertTrue(tf.math.reduce_all(tf.math.is_inf(tf.gather(scores, suppress_tokens, axis=1))))
        self.assertFalse(tf.math.reduce_any(tf.math.is_inf(tf.gather(scores, keep_tokens, axis=1))))

    @parameterized.expand([(False,), (True,)])
    def test_force_tokens_logits_processor(self, use_xla):
        vocab_size = 20
        batch_size = 4

        force_token_map = {1: 2, 3: 2}

        logits_processor = TFForceTokensLogitsProcessor(force_token_map=force_token_map)
        if use_xla:
            logits_processor = tf.function(logits_processor, jit_compile=True)

        # check that if the cur_len is contained in the force_token_map, the logits are the same
        # for all tokens except the one the force_token_map points to
        cur_len = 1
        input_ids = tf.convert_to_tensor([[11], [7], [5], [15]])
        ids_tensor((batch_size, cur_len), vocab_size=20)
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores = logits_processor(input_ids, scores, cur_len)
        tf.debugging.assert_near(tf.gather(scores, [force_token_map[cur_len]], axis=1), 0.0)

        non_forced_inds = [i for i in range(vocab_size) if i != force_token_map[cur_len]]
        self.assertTrue(
            tf.math.reduce_all(tf.math.is_inf(tf.gather(scores, [non_forced_inds], axis=1))),
        )

        # check that if the cur_len is not contained in the force_token_map, the logits are not modified
        cur_len = 2
        input_ids = tf.convert_to_tensor([[2, 19], [19, 15], [4, 9], [7, 6]])
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores = logits_processor(input_ids, scores, cur_len)
        self.assertFalse(tf.math.reduce_any(tf.math.is_inf((scores))))

    @parameterized.expand([(False,), (True,)])
    def test_processor_list(self, use_xla):
        # TODO (Joao): reintroduce TFNoRepeatNGramLogitsProcessor when it gets compatible with XLA
        batch_size = 4
        cur_len = 10
        vocab_size = 15
        eos_token_id = 0

        # dummy input_ids and scores
        input_ids = ids_tensor((batch_size, cur_len), vocab_size)
        input_ids_comp = tf.identity(input_ids)

        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores_comp = tf.identity(scores)

        # instantiate all dist processors
        min_dist_proc = TFMinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id)
        temp_dist_warp = TFTemperatureLogitsWarper(temperature=0.5)
        rep_penalty_proc = TFRepetitionPenaltyLogitsProcessor(penalty=2.0)
        top_k_warp = TFTopKLogitsWarper(3)
        top_p_warp = TFTopPLogitsWarper(0.8)
        # no_repeat_proc = TFNoRepeatNGramLogitsProcessor(2)
        no_bad_words_dist_proc = TFNoBadWordsLogitsProcessor(bad_words_ids=[[1]], eos_token_id=eos_token_id)
        if use_xla:
            min_dist_proc = tf.function(min_dist_proc, jit_compile=True)
            temp_dist_warp = tf.function(temp_dist_warp, jit_compile=True)
            rep_penalty_proc = tf.function(rep_penalty_proc, jit_compile=True)
            top_k_warp = tf.function(top_k_warp, jit_compile=True)
            top_p_warp = tf.function(top_p_warp, jit_compile=True)
            # no_repeat_proc = tf.function(no_repeat_proc, jit_compile=True)
            no_bad_words_dist_proc = tf.function(no_bad_words_dist_proc, jit_compile=True)

        # no processor list
        scores = min_dist_proc(input_ids, scores, cur_len)
        scores = temp_dist_warp(input_ids, scores, cur_len)
        scores = rep_penalty_proc(input_ids, scores, cur_len)
        scores = top_k_warp(input_ids, scores, cur_len)
        scores = top_p_warp(input_ids, scores, cur_len)
        # scores = no_repeat_proc(input_ids, scores, cur_len)
        scores = no_bad_words_dist_proc(input_ids, scores, cur_len)

        # with processor list
        processor = TFLogitsProcessorList(
            [
                min_dist_proc,
                temp_dist_warp,
                rep_penalty_proc,
                top_k_warp,
                top_p_warp,
                # no_repeat_proc,
                no_bad_words_dist_proc,
            ]
        )
        scores_comp = processor(input_ids, scores_comp, cur_len)

        # remove inf
        scores = tf.where(tf.math.is_inf(scores), -1e9, scores)
        scores_comp = tf.where(tf.math.is_inf(scores_comp), -1e9, scores_comp)

        # scores should be equal
        tf.debugging.assert_near(scores, scores_comp, atol=1e-3)

        # input_ids should never be changed
        self.assertListEqual(input_ids.numpy().tolist(), input_ids_comp.numpy().tolist())