File size: 8,104 Bytes
a1d409e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory

from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
    convert,
    ensure_valid_input,
    generate_identified_filename,
    infer_shapes,
    quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow


class FuncContiguousArgs:
    def forward(self, input_ids, token_type_ids, attention_mask):
        return None


class FuncNonContiguousArgs:
    def forward(self, input_ids, some_other_args, token_type_ids, attention_mask):
        return None


class OnnxExportTestCase(unittest.TestCase):
    MODEL_TO_TEST = [
        # (model_name, model_kwargs)
        ("bert-base-cased", {}),
        ("gpt2", {"use_cache": False}),  # We don't support exporting GPT2 past keys anymore
    ]

    @require_tf
    @slow
    def test_export_tensorflow(self):
        for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
            self._test_export(model, "tf", 12, **model_kwargs)

    @require_torch
    @slow
    def test_export_pytorch(self):
        for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
            self._test_export(model, "pt", 12, **model_kwargs)

    @require_torch
    @slow
    def test_export_custom_bert_model(self):
        from transformers import BertModel

        vocab = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"]
        with NamedTemporaryFile(mode="w+t") as vocab_file:
            vocab_file.write("\n".join(vocab))
            vocab_file.flush()
            tokenizer = BertTokenizerFast(vocab_file.name)

        with TemporaryDirectory() as bert_save_dir:
            model = BertModel(BertConfig(vocab_size=len(vocab)))
            model.save_pretrained(bert_save_dir)
            self._test_export(bert_save_dir, "pt", 12, tokenizer)

    @require_tf
    @slow
    def test_quantize_tf(self):
        for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
            path = self._test_export(model, "tf", 12, **model_kwargs)
            quantized_path = quantize(Path(path))

            # Ensure the actual quantized model is not bigger than the original one
            if quantized_path.stat().st_size >= Path(path).stat().st_size:
                self.fail("Quantized model is bigger than initial ONNX model")

    @require_torch
    @slow
    def test_quantize_pytorch(self):
        for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
            path = self._test_export(model, "pt", 12, **model_kwargs)
            quantized_path = quantize(path)

            # Ensure the actual quantized model is not bigger than the original one
            if quantized_path.stat().st_size >= Path(path).stat().st_size:
                self.fail("Quantized model is bigger than initial ONNX model")

    def _test_export(self, model, framework, opset, tokenizer=None, **model_kwargs):
        try:
            # Compute path
            with TemporaryDirectory() as tempdir:
                path = Path(tempdir).joinpath("model.onnx")

            # Remove folder if exists
            if path.parent.exists():
                path.parent.rmdir()

            # Export
            convert(framework, model, path, opset, tokenizer, **model_kwargs)

            return path
        except Exception as e:
            self.fail(e)

    @require_torch
    @require_tokenizers
    @slow
    def test_infer_dynamic_axis_pytorch(self):
        """
        Validate the dynamic axis generated for each parameters are correct
        """
        from transformers import BertModel

        model = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random"))
        tokenizer = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random")
        self._test_infer_dynamic_axis(model, tokenizer, "pt")

    @require_tf
    @require_tokenizers
    @slow
    def test_infer_dynamic_axis_tf(self):
        """
        Validate the dynamic axis generated for each parameters are correct
        """
        from transformers import TFBertModel

        model = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random"))
        tokenizer = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random")
        self._test_infer_dynamic_axis(model, tokenizer, "tf")

    def _test_infer_dynamic_axis(self, model, tokenizer, framework):
        feature_extractor = FeatureExtractionPipeline(model, tokenizer)

        variable_names = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"]
        input_vars, output_vars, shapes, tokens = infer_shapes(feature_extractor, framework)

        # Assert all variables are present
        self.assertEqual(len(shapes), len(variable_names))
        self.assertTrue(all([var_name in shapes for var_name in variable_names]))
        self.assertSequenceEqual(variable_names[:3], input_vars)
        self.assertSequenceEqual(variable_names[3:], output_vars)

        # Assert inputs are {0: batch, 1: sequence}
        for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
            self.assertDictEqual(shapes[var_name], {0: "batch", 1: "sequence"})

        # Assert outputs are {0: batch, 1: sequence} and {0: batch}
        self.assertDictEqual(shapes["output_0"], {0: "batch", 1: "sequence"})
        self.assertDictEqual(shapes["output_1"], {0: "batch"})

    def test_ensure_valid_input(self):
        """
        Validate parameters are correctly exported
        GPT2 has "past" parameter in the middle of input_ids, token_type_ids and attention_mask.
        ONNX doesn't support export with a dictionary, only a tuple. Thus we need to ensure we remove
        token_type_ids and attention_mask for now to not having a None tensor in the middle
        """
        # All generated args are valid
        input_names = ["input_ids", "attention_mask", "token_type_ids"]
        tokens = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]}
        ordered_input_names, inputs_args = ensure_valid_input(FuncContiguousArgs(), tokens, input_names)

        # Should have exactly the same number of args (all are valid)
        self.assertEqual(len(inputs_args), 3)

        # Should have exactly the same input names
        self.assertEqual(set(ordered_input_names), set(input_names))

        # Parameter should be reordered according to their respective place in the function:
        # (input_ids, token_type_ids, attention_mask)
        self.assertEqual(inputs_args, (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]))

        # Generated args are interleaved with another args (for instance parameter "past" in GPT2)
        ordered_input_names, inputs_args = ensure_valid_input(FuncNonContiguousArgs(), tokens, input_names)

        # Should have exactly the one arg (all before the one not provided "some_other_args")
        self.assertEqual(len(inputs_args), 1)
        self.assertEqual(len(ordered_input_names), 1)

        # Should have only "input_ids"
        self.assertEqual(inputs_args[0], tokens["input_ids"])
        self.assertEqual(ordered_input_names[0], "input_ids")

    def test_generate_identified_name(self):
        generated = generate_identified_filename(Path("/home/something/my_fake_model.onnx"), "-test")
        self.assertEqual("/home/something/my_fake_model-test.onnx", generated.as_posix())