Spaces:
Runtime error
Runtime error
File size: 22,644 Bytes
a1d409e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
import os
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile
from unittest import TestCase
from unittest.mock import patch
import pytest
from parameterized import parameterized
from transformers import AutoConfig, PreTrainedTokenizerBase, is_tf_available, is_torch_available
from transformers.onnx import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
ParameterFormat,
validate_model_outputs,
)
from transformers.onnx.utils import (
compute_effective_axis_dimension,
compute_serialized_parameters_size,
get_preprocessor,
)
from transformers.testing_utils import require_onnx, require_rjieba, require_tf, require_torch, require_vision, slow
if is_torch_available() or is_tf_available():
from transformers.onnx.features import FeaturesManager
if is_torch_available():
import torch
from transformers.models.deberta import modeling_deberta
@require_onnx
class OnnxUtilsTestCaseV2(TestCase):
"""
Cover all the utilities involved to export ONNX models
"""
def test_compute_effective_axis_dimension(self):
"""
When exporting ONNX model with dynamic axis (batch or sequence) we set batch_size and/or sequence_length = -1.
We cannot generate an effective tensor with axis dim == -1, so we trick by using some "fixed" values
(> 1 to avoid ONNX squeezing the axis).
This test ensure we are correctly replacing generated batch / sequence tensor with axis > 1
"""
# Dynamic axis (batch, no token added by the tokenizer)
self.assertEqual(compute_effective_axis_dimension(-1, fixed_dimension=2, num_token_to_add=0), 2)
# Static axis (batch, no token added by the tokenizer)
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=2, num_token_to_add=0), 2)
# Dynamic axis (sequence, token added by the tokenizer 2 (no pair))
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)
# Dynamic axis (sequence, token added by the tokenizer 3 (pair))
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)
self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)
def test_compute_parameters_serialized_size(self):
"""
This test ensures we compute a "correct" approximation of the underlying storage requirement (size) for all the
parameters for the specified parameter's dtype.
"""
self.assertEqual(compute_serialized_parameters_size(2, ParameterFormat.Float), 2 * ParameterFormat.Float.size)
def test_flatten_output_collection_property(self):
"""
This test ensures we correctly flatten nested collection such as the one we use when returning past_keys.
past_keys = Tuple[Tuple]
ONNX exporter will export nested collections as ${collection_name}.${level_idx_0}.${level_idx_1}...${idx_n}
"""
self.assertEqual(
OnnxConfig.flatten_output_collection_property("past_key", [[0], [1], [2]]),
{
"past_key.0": 0,
"past_key.1": 1,
"past_key.2": 2,
},
)
class OnnxConfigTestCaseV2(TestCase):
"""
Cover the test for models default.
Default means no specific features is being enabled on the model.
"""
@patch.multiple(OnnxConfig, __abstractmethods__=set())
def test_use_external_data_format(self):
"""
External data format is required only if the serialized size of the parameters if bigger than 2Gb
"""
TWO_GB_LIMIT = EXTERNAL_DATA_FORMAT_SIZE_LIMIT
# No parameters
self.assertFalse(OnnxConfig.use_external_data_format(0))
# Some parameters
self.assertFalse(OnnxConfig.use_external_data_format(1))
# Almost 2Gb parameters
self.assertFalse(OnnxConfig.use_external_data_format((TWO_GB_LIMIT - 1) // ParameterFormat.Float.size))
# Exactly 2Gb parameters
self.assertTrue(OnnxConfig.use_external_data_format(TWO_GB_LIMIT))
# More than 2Gb parameters
self.assertTrue(OnnxConfig.use_external_data_format((TWO_GB_LIMIT + 1) // ParameterFormat.Float.size))
class OnnxConfigWithPastTestCaseV2(TestCase):
"""
Cover the tests for model which have use_cache feature (i.e. "with_past" for ONNX)
"""
SUPPORTED_WITH_PAST_CONFIGS = {}
# SUPPORTED_WITH_PAST_CONFIGS = {
# ("BART", BartConfig),
# ("GPT2", GPT2Config),
# # ("T5", T5Config)
# }
@patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
def test_use_past(self):
"""
Ensure the use_past variable is correctly being set
"""
for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
with self.subTest(name):
self.assertFalse(
OnnxConfigWithPast.from_model_config(config()).use_past,
"OnnxConfigWithPast.from_model_config() should not use_past",
)
self.assertTrue(
OnnxConfigWithPast.with_past(config()).use_past,
"OnnxConfigWithPast.from_model_config() should use_past",
)
@patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
def test_values_override(self):
"""
Ensure the use_past variable correctly set the `use_cache` value in model's configuration
"""
for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
with self.subTest(name):
# without past
onnx_config_default = OnnxConfigWithPast.from_model_config(config())
self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
self.assertFalse(
onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
)
# with past
onnx_config_default = OnnxConfigWithPast.with_past(config())
self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
self.assertTrue(
onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
)
PYTORCH_EXPORT_MODELS = {
("albert", "hf-internal-testing/tiny-random-AlbertModel"),
("bert", "hf-internal-testing/tiny-random-BertModel"),
("beit", "microsoft/beit-base-patch16-224"),
("big-bird", "hf-internal-testing/tiny-random-BigBirdModel"),
("camembert", "camembert-base"),
("clip", "hf-internal-testing/tiny-random-CLIPModel"),
("convbert", "hf-internal-testing/tiny-random-ConvBertModel"),
("codegen", "hf-internal-testing/tiny-random-CodeGenModel"),
("data2vec-text", "hf-internal-testing/tiny-random-Data2VecTextModel"),
("data2vec-vision", "facebook/data2vec-vision-base"),
("deberta", "hf-internal-testing/tiny-random-DebertaModel"),
("deberta-v2", "hf-internal-testing/tiny-random-DebertaV2Model"),
("deit", "facebook/deit-small-patch16-224"),
("convnext", "facebook/convnext-tiny-224"),
("detr", "facebook/detr-resnet-50"),
("distilbert", "hf-internal-testing/tiny-random-DistilBertModel"),
("electra", "hf-internal-testing/tiny-random-ElectraModel"),
("groupvit", "nvidia/groupvit-gcc-yfcc"),
("ibert", "kssteven/ibert-roberta-base"),
("imagegpt", "openai/imagegpt-small"),
("levit", "facebook/levit-128S"),
("layoutlm", "hf-internal-testing/tiny-random-LayoutLMModel"),
("layoutlmv3", "microsoft/layoutlmv3-base"),
("longformer", "allenai/longformer-base-4096"),
("mobilebert", "hf-internal-testing/tiny-random-MobileBertModel"),
("mobilenet_v1", "google/mobilenet_v1_0.75_192"),
("mobilenet_v2", "google/mobilenet_v2_0.35_96"),
("mobilevit", "apple/mobilevit-small"),
("owlvit", "google/owlvit-base-patch32"),
("perceiver", "hf-internal-testing/tiny-random-PerceiverModel", ("masked-lm", "sequence-classification")),
("perceiver", "hf-internal-testing/tiny-random-PerceiverModel", ("image-classification",)),
("poolformer", "sail/poolformer_s12"),
("rembert", "google/rembert"),
("resnet", "microsoft/resnet-50"),
("roberta", "hf-internal-testing/tiny-random-RobertaModel"),
("roformer", "hf-internal-testing/tiny-random-RoFormerModel"),
("segformer", "nvidia/segformer-b0-finetuned-ade-512-512"),
("squeezebert", "hf-internal-testing/tiny-random-SqueezeBertModel"),
("swin", "microsoft/swin-tiny-patch4-window7-224"),
("vit", "google/vit-base-patch16-224"),
("yolos", "hustvl/yolos-tiny"),
("whisper", "openai/whisper-tiny.en"),
("xlm", "hf-internal-testing/tiny-random-XLMModel"),
("xlm-roberta", "hf-internal-testing/tiny-random-XLMRobertaXLModel"),
}
PYTORCH_EXPORT_ENCODER_DECODER_MODELS = {
("vision-encoder-decoder", "nlpconnect/vit-gpt2-image-captioning"),
}
PYTORCH_EXPORT_WITH_PAST_MODELS = {
("bloom", "hf-internal-testing/tiny-random-BloomModel"),
("gpt2", "hf-internal-testing/tiny-random-GPT2Model"),
("gpt-neo", "hf-internal-testing/tiny-random-GPTNeoModel"),
}
PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS = {
("bart", "hf-internal-testing/tiny-random-BartModel"),
("bigbird-pegasus", "hf-internal-testing/tiny-random-BigBirdPegasusModel"),
("blenderbot-small", "facebook/blenderbot_small-90M"),
("blenderbot", "hf-internal-testing/tiny-random-BlenderbotModel"),
("longt5", "hf-internal-testing/tiny-random-LongT5Model"),
("marian", "Helsinki-NLP/opus-mt-en-de"),
("mbart", "sshleifer/tiny-mbart"),
("mt5", "google/mt5-base"),
("m2m-100", "hf-internal-testing/tiny-random-M2M100Model"),
("t5", "hf-internal-testing/tiny-random-T5Model"),
}
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_MODELS` once TensorFlow has parity with the PyTorch model implementations.
TENSORFLOW_EXPORT_DEFAULT_MODELS = {
("albert", "hf-internal-testing/tiny-albert"),
("bert", "hf-internal-testing/tiny-random-BertModel"),
("camembert", "camembert-base"),
("distilbert", "hf-internal-testing/tiny-random-DistilBertModel"),
("roberta", "hf-internal-testing/tiny-random-RobertaModel"),
}
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_WITH_PAST_MODELS` once TensorFlow has parity with the PyTorch model implementations.
TENSORFLOW_EXPORT_WITH_PAST_MODELS = {}
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS` once TensorFlow has parity with the PyTorch model implementations.
TENSORFLOW_EXPORT_SEQ2SEQ_WITH_PAST_MODELS = {}
def _get_models_to_test(export_models_list):
models_to_test = []
if is_torch_available() or is_tf_available():
for name, model, *features in export_models_list:
if features:
feature_config_mapping = {
feature: FeaturesManager.get_config(name, feature) for _ in features for feature in _
}
else:
# pre-process the model names
model_type = name.replace("_", "-")
model_name = getattr(model, "name", "")
feature_config_mapping = FeaturesManager.get_supported_features_for_model_type(
model_type, model_name=model_name
)
for feature, onnx_config_class_constructor in feature_config_mapping.items():
models_to_test.append((f"{name}_{feature}", name, model, feature, onnx_config_class_constructor))
return sorted(models_to_test)
else:
# Returning some dummy test that should not be ever called because of the @require_torch / @require_tf
# decorators.
# The reason for not returning an empty list is because parameterized.expand complains when it's empty.
return [("dummy", "dummy", "dummy", "dummy", OnnxConfig.from_model_config)]
class OnnxExportTestCaseV2(TestCase):
"""
Integration tests ensuring supported models are correctly exported
"""
def _onnx_export(
self, test_name, name, model_name, feature, onnx_config_class_constructor, device="cpu", framework="pt"
):
from transformers.onnx import export
model_class = FeaturesManager.get_model_class_for_feature(feature, framework=framework)
config = AutoConfig.from_pretrained(model_name)
model = model_class.from_config(config)
# Dynamic axes aren't supported for YOLO-like models. This means they cannot be exported to ONNX on CUDA devices.
# See: https://github.com/ultralytics/yolov5/pull/8378
if model.__class__.__name__.startswith("Yolos") and device != "cpu":
return
# ONNX inference fails with the following name, feature, framework parameterizations
# See: https://github.com/huggingface/transformers/issues/19357
if (name, feature, framework) in {
("deberta-v2", "question-answering", "pt"),
("deberta-v2", "multiple-choice", "pt"),
("roformer", "multiple-choice", "pt"),
("groupvit", "default", "pt"),
("perceiver", "masked-lm", "pt"),
("perceiver", "sequence-classification", "pt"),
("perceiver", "image-classification", "pt"),
("bert", "multiple-choice", "tf"),
("camembert", "multiple-choice", "tf"),
("roberta", "multiple-choice", "tf"),
}:
return
onnx_config = onnx_config_class_constructor(model.config)
if is_torch_available():
from transformers.utils import torch_version
if torch_version < onnx_config.torch_onnx_minimum_version:
pytest.skip(
"Skipping due to incompatible PyTorch version. Minimum required is"
f" {onnx_config.torch_onnx_minimum_version}, got: {torch_version}"
)
preprocessor = get_preprocessor(model_name)
# Useful for causal lm models that do not use pad tokens.
if isinstance(preprocessor, PreTrainedTokenizerBase) and not getattr(config, "pad_token_id", None):
config.pad_token_id = preprocessor.eos_token_id
with NamedTemporaryFile("w") as output:
try:
onnx_inputs, onnx_outputs = export(
preprocessor, model, onnx_config, onnx_config.default_onnx_opset, Path(output.name), device=device
)
validate_model_outputs(
onnx_config,
preprocessor,
model,
Path(output.name),
onnx_outputs,
onnx_config.atol_for_validation,
)
except (RuntimeError, ValueError) as e:
self.fail(f"{name}, {feature} -> {e}")
def _onnx_export_encoder_decoder_models(
self, test_name, name, model_name, feature, onnx_config_class_constructor, device="cpu"
):
from transformers import AutoFeatureExtractor, AutoTokenizer
from transformers.onnx import export
model_class = FeaturesManager.get_model_class_for_feature(feature)
config = AutoConfig.from_pretrained(model_name)
model = model_class.from_config(config)
onnx_config = onnx_config_class_constructor(model.config)
if is_torch_available():
from transformers.utils import torch_version
if torch_version < onnx_config.torch_onnx_minimum_version:
pytest.skip(
"Skipping due to incompatible PyTorch version. Minimum required is"
f" {onnx_config.torch_onnx_minimum_version}, got: {torch_version}"
)
encoder_model = model.get_encoder()
decoder_model = model.get_decoder()
encoder_onnx_config = onnx_config.get_encoder_config(encoder_model.config)
decoder_onnx_config = onnx_config.get_decoder_config(encoder_model.config, decoder_model.config, feature)
preprocessor = AutoFeatureExtractor.from_pretrained(model_name)
onnx_opset = max(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset)
with NamedTemporaryFile("w") as encoder_output:
onnx_inputs, onnx_outputs = export(
preprocessor, encoder_model, encoder_onnx_config, onnx_opset, Path(encoder_output.name), device=device
)
validate_model_outputs(
encoder_onnx_config,
preprocessor,
encoder_model,
Path(encoder_output.name),
onnx_outputs,
encoder_onnx_config.atol_for_validation,
)
preprocessor = AutoTokenizer.from_pretrained(model_name)
with NamedTemporaryFile("w") as decoder_output:
_, onnx_outputs = export(
preprocessor,
decoder_model,
decoder_onnx_config,
onnx_config.default_onnx_opset,
Path(decoder_output.name),
device=device,
)
validate_model_outputs(
decoder_onnx_config,
preprocessor,
decoder_model,
Path(decoder_output.name),
onnx_outputs,
decoder_onnx_config.atol_for_validation,
)
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_MODELS))
@slow
@require_torch
@require_vision
@require_rjieba
def test_pytorch_export(self, test_name, name, model_name, feature, onnx_config_class_constructor):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_MODELS))
@slow
@require_torch
@require_vision
@require_rjieba
def test_pytorch_export_on_cuda(self, test_name, name, model_name, feature, onnx_config_class_constructor):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, device="cuda")
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_ENCODER_DECODER_MODELS))
@slow
@require_torch
@require_vision
@require_rjieba
def test_pytorch_export_encoder_decoder_models(
self, test_name, name, model_name, feature, onnx_config_class_constructor
):
self._onnx_export_encoder_decoder_models(test_name, name, model_name, feature, onnx_config_class_constructor)
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_ENCODER_DECODER_MODELS))
@slow
@require_torch
@require_vision
@require_rjieba
def test_pytorch_export_encoder_decoder_models_on_cuda(
self, test_name, name, model_name, feature, onnx_config_class_constructor
):
self._onnx_export_encoder_decoder_models(
test_name, name, model_name, feature, onnx_config_class_constructor, device="cuda"
)
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_WITH_PAST_MODELS))
@slow
@require_torch
def test_pytorch_export_with_past(self, test_name, name, model_name, feature, onnx_config_class_constructor):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
@parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS))
@slow
@require_torch
def test_pytorch_export_seq2seq_with_past(
self, test_name, name, model_name, feature, onnx_config_class_constructor
):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
@parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_DEFAULT_MODELS))
@slow
@require_tf
@require_vision
def test_tensorflow_export(self, test_name, name, model_name, feature, onnx_config_class_constructor):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
@parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_WITH_PAST_MODELS), skip_on_empty=True)
@slow
@require_tf
def test_tensorflow_export_with_past(self, test_name, name, model_name, feature, onnx_config_class_constructor):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
@parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_SEQ2SEQ_WITH_PAST_MODELS), skip_on_empty=True)
@slow
@require_tf
def test_tensorflow_export_seq2seq_with_past(
self, test_name, name, model_name, feature, onnx_config_class_constructor
):
self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
class StableDropoutTestCase(TestCase):
"""Tests export of StableDropout module."""
@unittest.skip("torch 2.0.0 gives `torch.onnx.errors.OnnxExporterError: Module onnx is not installed!`.")
@require_torch
@pytest.mark.filterwarnings("ignore:.*Dropout.*:UserWarning:torch.onnx.*") # torch.onnx is spammy.
def test_training(self):
"""Tests export of StableDropout in training mode."""
devnull = open(os.devnull, "wb")
# drop_prob must be > 0 for the test to be meaningful
sd = modeling_deberta.StableDropout(0.1)
# Avoid warnings in training mode
do_constant_folding = False
# Dropout is a no-op in inference mode
training = torch.onnx.TrainingMode.PRESERVE
input = (torch.randn(2, 2),)
torch.onnx.export(
sd,
input,
devnull,
opset_version=12, # Minimum supported
do_constant_folding=do_constant_folding,
training=training,
)
# Expected to fail with opset_version < 12
with self.assertRaises(Exception):
torch.onnx.export(
sd,
input,
devnull,
opset_version=11,
do_constant_folding=do_constant_folding,
training=training,
)
|