Spaces:
Runtime error
Runtime error
File size: 67,514 Bytes
a1d409e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import collections.abc
import copy
import inspect
import json
import multiprocessing
import os
import shutil
import tempfile
import traceback
from pathlib import Path
from check_config_docstrings import get_checkpoint_from_config_class
from datasets import load_dataset
from get_test_info import get_model_to_tester_mapping, get_tester_classes_for_model
from huggingface_hub import Repository, create_repo, hf_api, upload_folder
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
IMAGE_PROCESSOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoTokenizer,
LayoutLMv3TokenizerFast,
PreTrainedTokenizer,
PreTrainedTokenizerFast,
logging,
)
from transformers.feature_extraction_utils import FeatureExtractionMixin
from transformers.file_utils import is_tf_available, is_torch_available
from transformers.image_processing_utils import BaseImageProcessor
from transformers.models.auto.configuration_auto import AutoConfig, model_type_to_module_name
from transformers.models.fsmt import configuration_fsmt
from transformers.processing_utils import ProcessorMixin, transformers_module
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
# make sure tokenizer plays nice with multiprocessing
os.environ["TOKENIZERS_PARALLELISM"] = "false"
logging.set_verbosity_error()
logging.disable_progress_bar()
logger = logging.get_logger(__name__)
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
if not is_torch_available():
raise ValueError("Please install PyTorch.")
if not is_tf_available():
raise ValueError("Please install TensorFlow.")
FRAMEWORKS = ["pytorch", "tensorflow"]
INVALID_ARCH = []
TARGET_VOCAB_SIZE = 1024
data = {"training_ds": None, "testing_ds": None}
COMPOSITE_MODELS = {
"EncoderDecoderModel": "EncoderDecoderModel-bert-bert",
"SpeechEncoderDecoderModel": "SpeechEncoderDecoderModel-wav2vec2-bert",
"VisionEncoderDecoderModel": "VisionEncoderDecoderModel-vit-gpt2",
"VisionTextDualEncoderModel": "VisionTextDualEncoderModel-vit-bert",
}
# This list contains the model architectures for which a tiny version could not be created.
# Avoid to add new architectures here - unless we have verified carefully that it's (almost) impossible to create them.
# One such case is: no model tester class is implemented for a model type (like `MT5`) because its architecture is
# identical to another one (`MT5` is based on `T5`), but trained on different datasets or with different techniques.
UNCONVERTIBLE_MODEL_ARCHITECTURES = {
"BertGenerationEncoder",
"BertGenerationDecoder",
"CamembertForSequenceClassification",
"CamembertForMultipleChoice",
"CamembertForMaskedLM",
"CamembertForCausalLM",
"CamembertForTokenClassification",
"CamembertForQuestionAnswering",
"CamembertModel",
"TFCamembertForMultipleChoice",
"TFCamembertForTokenClassification",
"TFCamembertForQuestionAnswering",
"TFCamembertForSequenceClassification",
"TFCamembertForMaskedLM",
"TFCamembertModel",
"TFCamembertForCausalLM",
"DecisionTransformerModel",
"GraphormerModel",
"InformerModel",
"JukeboxModel",
"MarianForCausalLM",
"MaskFormerSwinModel",
"MaskFormerSwinBackbone",
"MT5Model",
"MT5ForConditionalGeneration",
"TFMT5ForConditionalGeneration",
"TFMT5Model",
"QDQBertForSequenceClassification",
"QDQBertForMaskedLM",
"QDQBertModel",
"QDQBertForTokenClassification",
"QDQBertLMHeadModel",
"QDQBertForMultipleChoice",
"QDQBertForQuestionAnswering",
"QDQBertForNextSentencePrediction",
"ReformerModelWithLMHead",
"RetriBertModel",
"Speech2Text2ForCausalLM",
"TimeSeriesTransformerModel",
"TrajectoryTransformerModel",
"TrOCRForCausalLM",
"XLMProphetNetForConditionalGeneration",
"XLMProphetNetForCausalLM",
"XLMProphetNetModel",
"XLMRobertaModel",
"XLMRobertaForTokenClassification",
"XLMRobertaForMultipleChoice",
"XLMRobertaForMaskedLM",
"XLMRobertaForCausalLM",
"XLMRobertaForSequenceClassification",
"XLMRobertaForQuestionAnswering",
"TFXLMRobertaForSequenceClassification",
"TFXLMRobertaForMaskedLM",
"TFXLMRobertaForCausalLM",
"TFXLMRobertaForQuestionAnswering",
"TFXLMRobertaModel",
"TFXLMRobertaForMultipleChoice",
"TFXLMRobertaForTokenClassification",
}
def get_processor_types_from_config_class(config_class, allowed_mappings=None):
"""Return a tuple of processors for `config_class`.
We use `tuple` here to include (potentially) both slow & fast tokenizers.
"""
# To make a uniform return type
def _to_tuple(x):
if not isinstance(x, collections.abc.Sequence):
x = (x,)
else:
x = tuple(x)
return x
if allowed_mappings is None:
allowed_mappings = ["processor", "tokenizer", "image_processor", "feature_extractor"]
processor_types = ()
# Check first if a model has `ProcessorMixin`. Otherwise, check if it has tokenizers, and/or an image processor or
# a feature extractor
if config_class in PROCESSOR_MAPPING and "processor" in allowed_mappings:
processor_types = _to_tuple(PROCESSOR_MAPPING[config_class])
else:
if config_class in TOKENIZER_MAPPING and "tokenizer" in allowed_mappings:
processor_types = TOKENIZER_MAPPING[config_class]
if config_class in IMAGE_PROCESSOR_MAPPING and "image_processor" in allowed_mappings:
processor_types += _to_tuple(IMAGE_PROCESSOR_MAPPING[config_class])
elif config_class in FEATURE_EXTRACTOR_MAPPING and "feature_extractor" in allowed_mappings:
processor_types += _to_tuple(FEATURE_EXTRACTOR_MAPPING[config_class])
# Remark: some configurations have no processor at all. For example, generic composite models like
# `EncoderDecoderModel` is used for any (compatible) text models. Also, `DecisionTransformer` doesn't
# require any processor.
# We might get `None` for some tokenizers - remove them here.
processor_types = tuple(p for p in processor_types if p is not None)
return processor_types
def get_architectures_from_config_class(config_class, arch_mappings, models_to_skip=None):
"""Return a tuple of all possible architectures attributed to a configuration class `config_class`.
For example, BertConfig -> [BertModel, BertForMaskedLM, ..., BertForQuestionAnswering].
"""
# A model architecture could appear in several mappings. For example, `BartForConditionalGeneration` is in
# - MODEL_FOR_PRETRAINING_MAPPING_NAMES
# - MODEL_WITH_LM_HEAD_MAPPING_NAMES
# - MODEL_FOR_MASKED_LM_MAPPING_NAMES
# - MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
# We avoid the duplication.
architectures = set()
if models_to_skip is None:
models_to_skip = []
models_to_skip = UNCONVERTIBLE_MODEL_ARCHITECTURES.union(models_to_skip)
for mapping in arch_mappings:
if config_class in mapping:
models = mapping[config_class]
models = tuple(models) if isinstance(models, collections.abc.Sequence) else (models,)
for model in models:
if model.__name__ not in models_to_skip:
architectures.add(model)
architectures = tuple(architectures)
return architectures
def get_config_class_from_processor_class(processor_class):
"""Get the config class from a processor class.
Some config/model classes use tokenizers/feature_extractors from other models. For example, `GPT-J` uses
`GPT2Tokenizer`. If no checkpoint is found for a config class, or a checkpoint is found without necessary file(s) to
create the processor for `processor_class`, we get the config class that corresponds to `processor_class` and use it
to find a checkpoint in order to create the processor.
"""
processor_prefix = processor_class.__name__
for postfix in ["TokenizerFast", "Tokenizer", "ImageProcessor", "FeatureExtractor", "Processor"]:
processor_prefix = processor_prefix.replace(postfix, "")
# `Wav2Vec2CTCTokenizer` -> `Wav2Vec2Config`
if processor_prefix == "Wav2Vec2CTC":
processor_prefix = "Wav2Vec2"
# Find the new configuration class
new_config_name = f"{processor_prefix}Config"
new_config_class = getattr(transformers_module, new_config_name)
return new_config_class
def build_processor(config_class, processor_class, allow_no_checkpoint=False):
"""Create a processor for `processor_class`.
If a processor is not able to be built with the original arguments, this method tries to change the arguments and
call itself recursively, by inferring a new `config_class` or a new `processor_class` from another one, in order to
find a checkpoint containing the necessary files to build a processor.
The processor is not saved here. Instead, it will be saved in `convert_processors` after further changes in
`convert_processors`. For each model architecture`, a copy will be created and saved along the built model.
"""
# Currently, this solely uses the docstring in the source file of `config_class` to find a checkpoint.
checkpoint = get_checkpoint_from_config_class(config_class)
if checkpoint is None:
# try to get the checkpoint from the config class for `processor_class`.
# This helps cases like `XCLIPConfig` and `VideoMAEFeatureExtractor` to find a checkpoint from `VideoMAEConfig`.
config_class_from_processor_class = get_config_class_from_processor_class(processor_class)
checkpoint = get_checkpoint_from_config_class(config_class_from_processor_class)
processor = None
try:
processor = processor_class.from_pretrained(checkpoint)
except Exception as e:
logger.error(f"{e.__class__.__name__}: {e}")
# Try to get a new processor class from checkpoint. This is helpful for a checkpoint without necessary file to load
# processor while `processor_class` is an Auto class. For example, `sew` has `Wav2Vec2Processor` in
# `PROCESSOR_MAPPING_NAMES`, its `tokenizer_class` is `AutoTokenizer`, and the checkpoint
# `https://huggingface.co/asapp/sew-tiny-100k` has no tokenizer file, but we can get
# `tokenizer_class: Wav2Vec2CTCTokenizer` from the config file. (The new processor class won't be able to load from
# `checkpoint`, but it helps this recursive method to find a way to build a processor).
if (
processor is None
and checkpoint is not None
and issubclass(processor_class, (PreTrainedTokenizerBase, AutoTokenizer))
):
try:
config = AutoConfig.from_pretrained(checkpoint)
except Exception as e:
logger.error(f"{e.__class__.__name__}: {e}")
config = None
if config is not None:
if not isinstance(config, config_class):
raise ValueError(
f"`config` (which is of type {config.__class__.__name__}) should be an instance of `config_class`"
f" ({config_class.__name__})!"
)
tokenizer_class = config.tokenizer_class
new_processor_class = None
if tokenizer_class is not None:
new_processor_class = getattr(transformers_module, tokenizer_class)
if new_processor_class != processor_class:
processor = build_processor(config_class, new_processor_class)
# If `tokenizer_class` is not specified in `config`, let's use `config` to get the process class via auto
# mappings, but only allow the tokenizer mapping being used. This is to make `Wav2Vec2Conformer` build
if processor is None:
new_processor_classes = get_processor_types_from_config_class(
config.__class__, allowed_mappings=["tokenizer"]
)
# Used to avoid infinite recursion between a pair of fast/slow tokenizer types
names = [
x.__name__.replace("Fast", "") for x in [processor_class, new_processor_class] if x is not None
]
new_processor_classes = [
x for x in new_processor_classes if x is not None and x.__name__.replace("Fast", "") not in names
]
if len(new_processor_classes) > 0:
new_processor_class = new_processor_classes[0]
# Let's use fast tokenizer if there is any
for x in new_processor_classes:
if x.__name__.endswith("Fast"):
new_processor_class = x
break
processor = build_processor(config_class, new_processor_class)
if processor is None:
# Try to build each component (tokenizer & feature extractor) of a `ProcessorMixin`.
if issubclass(processor_class, ProcessorMixin):
attrs = {}
for attr_name in processor_class.attributes:
attrs[attr_name] = []
# This could be a tuple (for tokenizers). For example, `CLIPProcessor` has
# - feature_extractor_class = "CLIPFeatureExtractor"
# - tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")
attr_class_names = getattr(processor_class, f"{attr_name}_class")
if not isinstance(attr_class_names, tuple):
attr_class_names = (attr_class_names,)
for name in attr_class_names:
attr_class = getattr(transformers_module, name)
attr = build_processor(config_class, attr_class)
if attr is not None:
attrs[attr_name].append(attr)
# try to build a `ProcessorMixin`, so we can return a single value
if all(len(v) > 0 for v in attrs.values()):
try:
processor = processor_class(**{k: v[0] for k, v in attrs.items()})
except Exception as e:
logger.error(f"{e.__class__.__name__}: {e}")
else:
# `checkpoint` might lack some file(s) to load a processor. For example, `facebook/hubert-base-ls960`
# has no tokenizer file to load `Wav2Vec2CTCTokenizer`. In this case, we try to build a processor
# with the configuration class (for example, `Wav2Vec2Config`) corresponding to `processor_class`.
config_class_from_processor_class = get_config_class_from_processor_class(processor_class)
if config_class_from_processor_class != config_class:
processor = build_processor(config_class_from_processor_class, processor_class)
# Try to create an image processor or a feature extractor without any checkpoint
if (
processor is None
and allow_no_checkpoint
and (issubclass(processor_class, BaseImageProcessor) or issubclass(processor_class, FeatureExtractionMixin))
):
try:
processor = processor_class()
except Exception as e:
logger.error(f"{e.__class__.__name__}: {e}")
# validation
if processor is not None:
if not (isinstance(processor, processor_class) or processor_class.__name__.startswith("Auto")):
raise ValueError(
f"`processor` (which is of type {processor.__class__.__name__}) should be an instance of"
f" {processor_class.__name__} or an Auto class!"
)
return processor
def get_tiny_config(config_class, model_class=None, **model_tester_kwargs):
"""Retrieve a tiny configuration from `config_class` using each model's `ModelTester`.
Args:
config_class: Subclass of `PreTrainedConfig`.
Returns:
An instance of `config_class` with tiny hyperparameters
"""
model_type = config_class.model_type
# For model type like `data2vec-vision` and `donut-swin`, we can't get the config/model file name directly via
# `model_type` as it would be sth. like `configuration_data2vec_vision.py`.
# A simple way is to use `inspect.getsourcefile(config_class)`.
config_source_file = inspect.getsourcefile(config_class)
# The modeling file name without prefix (`modeling_`) and postfix (`.py`)
modeling_name = config_source_file.split(os.path.sep)[-1].replace("configuration_", "").replace(".py", "")
try:
print("Importing", model_type_to_module_name(model_type))
module_name = model_type_to_module_name(model_type)
if not modeling_name.startswith(module_name):
raise ValueError(f"{modeling_name} doesn't start with {module_name}!")
test_file = os.path.join("tests", "models", module_name, f"test_modeling_{modeling_name}.py")
models_to_model_testers = get_model_to_tester_mapping(test_file)
# Find the model tester class
model_tester_class = None
tester_classes = []
if model_class is not None:
tester_classes = get_tester_classes_for_model(test_file, model_class)
else:
for _tester_classes in models_to_model_testers.values():
tester_classes.extend(_tester_classes)
if len(tester_classes) > 0:
# sort with the length of the class names first, then the alphabetical order
# This is to avoid `T5EncoderOnlyModelTest` is used instead of `T5ModelTest`, which has
# `is_encoder_decoder=False` and causes some pipeline tests failing (also failures in `Optimum` CI).
# TODO: More fine grained control of the desired tester class.
model_tester_class = sorted(tester_classes, key=lambda x: (len(x.__name__), x.__name__))[0]
except ModuleNotFoundError:
error = f"Tiny config not created for {model_type} - cannot find the testing module from the model name."
raise ValueError(error)
if model_tester_class is None:
error = f"Tiny config not created for {model_type} - no model tester is found in the testing module."
raise ValueError(error)
# `parent` is an instance of `unittest.TestCase`, but we don't need it here.
model_tester = model_tester_class(parent=None, **model_tester_kwargs)
if hasattr(model_tester, "get_pipeline_config"):
return model_tester.get_pipeline_config()
elif hasattr(model_tester, "prepare_config_and_inputs"):
# `PoolFormer` has no `get_config` defined. Furthermore, it's better to use `prepare_config_and_inputs` even if
# `get_config` is defined, since there might be some extra changes in `prepare_config_and_inputs`.
return model_tester.prepare_config_and_inputs()[0]
elif hasattr(model_tester, "get_config"):
return model_tester.get_config()
else:
error = (
f"Tiny config not created for {model_type} - the model tester {model_tester_class.__name__} lacks"
" necessary method to create config."
)
raise ValueError(error)
def convert_tokenizer(tokenizer_fast: PreTrainedTokenizerFast):
new_tokenizer = tokenizer_fast.train_new_from_iterator(
data["training_ds"]["text"], TARGET_VOCAB_SIZE, show_progress=False
)
# Make sure it at least runs
if not isinstance(new_tokenizer, LayoutLMv3TokenizerFast):
new_tokenizer(data["testing_ds"]["text"])
return new_tokenizer
def convert_feature_extractor(feature_extractor, tiny_config):
to_convert = False
kwargs = {}
if hasattr(tiny_config, "image_size"):
kwargs["size"] = tiny_config.image_size
kwargs["crop_size"] = tiny_config.image_size
to_convert = True
elif (
hasattr(tiny_config, "vision_config")
and tiny_config.vision_config is not None
and hasattr(tiny_config.vision_config, "image_size")
):
kwargs["size"] = tiny_config.vision_config.image_size
kwargs["crop_size"] = tiny_config.vision_config.image_size
to_convert = True
# Speech2TextModel specific.
if hasattr(tiny_config, "input_feat_per_channel"):
kwargs["feature_size"] = tiny_config.input_feat_per_channel
kwargs["num_mel_bins"] = tiny_config.input_feat_per_channel
to_convert = True
if to_convert:
feature_extractor = feature_extractor.__class__(**kwargs)
return feature_extractor
def convert_processors(processors, tiny_config, output_folder, result):
"""Change a processor to work with smaller inputs.
For tokenizers, we try to reduce their vocabulary size.
For feature extractor, we use smaller image size or change
other attributes using the values from `tiny_config`. See `convert_feature_extractor`.
This method should not fail: we catch the errors and put them in `result["warnings"]` with descriptive messages.
"""
def _sanity_check(fast_tokenizer, slow_tokenizer, keep_fast_tokenizer=False):
"""Set tokenizer(s) to `None` if the fast/slow tokenizers have different values for `vocab_size` or `length`.
If `keep_fast_tokenizer=True`, the fast tokenizer will be kept.
"""
# sanity check 1: fast and slow tokenizers should be compatible (vocab_size)
if fast_tokenizer is not None and slow_tokenizer is not None:
if fast_tokenizer.vocab_size != slow_tokenizer.vocab_size:
warning_messagae = (
"The fast/slow tokenizers "
f"({fast_tokenizer.__class__.__name__}/{slow_tokenizer.__class__.__name__}) have different "
"vocabulary size: "
f"fast_tokenizer.vocab_size = {fast_tokenizer.vocab_size} and "
f"slow_tokenizer.vocab_size = {slow_tokenizer.vocab_size}."
)
result["warnings"].append(warning_messagae)
if not keep_fast_tokenizer:
fast_tokenizer = None
slow_tokenizer = None
# sanity check 2: fast and slow tokenizers should be compatible (length)
if fast_tokenizer is not None and slow_tokenizer is not None:
if len(fast_tokenizer) != len(slow_tokenizer):
warning_messagae = (
f"The fast/slow tokenizers () have different length: "
f"len(fast_tokenizer) = {len(fast_tokenizer)} and "
f"len(slow_tokenizer) = {len(slow_tokenizer)}."
)
result["warnings"].append(warning_messagae)
if not keep_fast_tokenizer:
fast_tokenizer = None
slow_tokenizer = None
return fast_tokenizer, slow_tokenizer
tokenizers = []
feature_extractors = []
for processor in processors:
if isinstance(processor, PreTrainedTokenizerBase):
if processor.__class__.__name__ not in {x.__class__.__name__ for x in tokenizers}:
tokenizers.append(processor)
elif isinstance(processor, BaseImageProcessor):
if processor.__class__.__name__ not in {x.__class__.__name__ for x in feature_extractors}:
feature_extractors.append(processor)
elif isinstance(processor, FeatureExtractionMixin):
if processor.__class__.__name__ not in {x.__class__.__name__ for x in feature_extractors}:
feature_extractors.append(processor)
elif isinstance(processor, ProcessorMixin):
if hasattr(processor, "tokenizer"):
if processor.tokenizer.__class__.__name__ not in {x.__class__.__name__ for x in tokenizers}:
tokenizers.append(processor.tokenizer)
# Currently, we only have these 2 possibilities
if hasattr(processor, "image_processor"):
if processor.image_processor.__class__.__name__ not in {
x.__class__.__name__ for x in feature_extractors
}:
feature_extractors.append(processor.image_processor)
elif hasattr(processor, "feature_extractor"):
if processor.feature_extractor.__class__.__name__ not in {
x.__class__.__name__ for x in feature_extractors
}:
feature_extractors.append(processor.feature_extractor)
# check the built processors have the unique type
num_types = len({x.__class__.__name__ for x in feature_extractors})
if num_types >= 2:
raise ValueError(f"`feature_extractors` should contain at most 1 type, but it contains {num_types} types!")
num_types = len({x.__class__.__name__.replace("Fast", "") for x in tokenizers})
if num_types >= 2:
raise ValueError(f"`tokenizers` should contain at most 1 tokenizer type, but it contains {num_types} types!")
fast_tokenizer = None
slow_tokenizer = None
for tokenizer in tokenizers:
if isinstance(tokenizer, PreTrainedTokenizerFast):
fast_tokenizer = tokenizer
else:
slow_tokenizer = tokenizer
# If the (original) fast/slow tokenizers don't correspond, keep only the fast tokenizer.
# This doesn't necessarily imply the fast/slow tokenizers in a single Hub repo. has issues.
# It's more of an issue in `build_processor` which tries to get a checkpoint with as much effort as possible.
# For `YosoModel` (which uses `AlbertTokenizer(Fast)`), its real (Hub) checkpoint doesn't contain valid files to
# load the slower tokenizer (`AlbertTokenizer`), and it ends up finding the (canonical) checkpoint of `AlbertModel`,
# which has different vocabulary.
# TODO: Try to improve `build_processor`'s definition and/or usage to avoid the above situation in the first place.
fast_tokenizer, slow_tokenizer = _sanity_check(fast_tokenizer, slow_tokenizer, keep_fast_tokenizer=True)
original_fast_tokenizer, original_slow_tokenizer = fast_tokenizer, slow_tokenizer
if fast_tokenizer:
try:
# Wav2Vec2ForCTC , ByT5Tokenizer etc. all are already small enough and have no fast version that can
# be retrained
if fast_tokenizer.vocab_size > TARGET_VOCAB_SIZE:
fast_tokenizer = convert_tokenizer(fast_tokenizer)
except Exception:
result["warnings"].append(
(
f"Failed to convert the fast tokenizer for {fast_tokenizer.__class__.__name__}.",
traceback.format_exc(),
)
)
# If `fast_tokenizer` exists, `slow_tokenizer` should correspond to it.
if fast_tokenizer:
# Make sure the fast tokenizer can be saved
try:
# We don't save it to `output_folder` at this moment - only at the end of this function.
with tempfile.TemporaryDirectory() as tmpdir:
fast_tokenizer.save_pretrained(tmpdir)
try:
slow_tokenizer = AutoTokenizer.from_pretrained(tmpdir, use_fast=False)
except Exception:
result["warnings"].append(
(
f"Failed to load the slow tokenizer saved from {fast_tokenizer.__class__.__name__}.",
traceback.format_exc(),
)
)
# Let's just keep the fast version
slow_tokenizer = None
except Exception:
result["warnings"].append(
(
f"Failed to save the fast tokenizer for {fast_tokenizer.__class__.__name__}.",
traceback.format_exc(),
)
)
fast_tokenizer = None
# If the (possibly converted) fast/slow tokenizers don't correspond, set them to `None`, and use the original
# tokenizers.
fast_tokenizer, slow_tokenizer = _sanity_check(fast_tokenizer, slow_tokenizer, keep_fast_tokenizer=False)
# If there is any conversion failed, we keep the original tokenizers.
if (original_fast_tokenizer is not None and fast_tokenizer is None) or (
original_slow_tokenizer is not None and slow_tokenizer is None
):
warning_messagae = (
"There are some issues when converting the fast/slow tokenizers. The original tokenizers from the Hub "
" will be used instead."
)
result["warnings"].append(warning_messagae)
# Let's use the original version at the end (`original_fast_tokenizer` and `original_slow_tokenizer`)
fast_tokenizer = original_fast_tokenizer
slow_tokenizer = original_slow_tokenizer
# Make sure the fast tokenizer can be saved
if fast_tokenizer:
# We don't save it to `output_folder` at this moment - only at the end of this function.
with tempfile.TemporaryDirectory() as tmpdir:
try:
fast_tokenizer.save_pretrained(tmpdir)
except Exception:
result["warnings"].append(
(
f"Failed to save the fast tokenizer for {fast_tokenizer.__class__.__name__}.",
traceback.format_exc(),
)
)
fast_tokenizer = None
# Make sure the slow tokenizer can be saved
if slow_tokenizer:
# We don't save it to `output_folder` at this moment - only at the end of this function.
with tempfile.TemporaryDirectory() as tmpdir:
try:
slow_tokenizer.save_pretrained(tmpdir)
except Exception:
result["warnings"].append(
(
f"Failed to save the slow tokenizer for {slow_tokenizer.__class__.__name__}.",
traceback.format_exc(),
)
)
slow_tokenizer = None
# update feature extractors using the tiny config
try:
feature_extractors = [convert_feature_extractor(p, tiny_config) for p in feature_extractors]
except Exception:
result["warnings"].append(
(
"Failed to convert feature extractors.",
traceback.format_exc(),
)
)
feature_extractors = []
if hasattr(tiny_config, "max_position_embeddings") and tiny_config.max_position_embeddings > 0:
if fast_tokenizer is not None:
if fast_tokenizer.__class__.__name__ in [
"RobertaTokenizerFast",
"XLMRobertaTokenizerFast",
"LongformerTokenizerFast",
"MPNetTokenizerFast",
]:
fast_tokenizer.model_max_length = tiny_config.max_position_embeddings - 2
else:
fast_tokenizer.model_max_length = tiny_config.max_position_embeddings
if slow_tokenizer is not None:
if slow_tokenizer.__class__.__name__ in [
"RobertaTokenizer",
"XLMRobertaTokenizer",
"LongformerTokenizer",
"MPNetTokenizer",
]:
slow_tokenizer.model_max_length = tiny_config.max_position_embeddings - 2
else:
slow_tokenizer.model_max_length = tiny_config.max_position_embeddings
processors = [fast_tokenizer, slow_tokenizer] + feature_extractors
processors = [p for p in processors if p is not None]
for p in processors:
p.save_pretrained(output_folder)
return processors
def get_checkpoint_dir(output_dir, model_arch):
"""Get framework-agnostic architecture name. Used to save all PT/TF/Flax models into the same directory."""
arch_name = model_arch.__name__
if arch_name.startswith("TF"):
arch_name = arch_name[2:]
elif arch_name.startswith("Flax"):
arch_name = arch_name[4:]
return os.path.join(output_dir, arch_name)
def build_model(model_arch, tiny_config, output_dir):
"""Create and save a model for `model_arch`.
Also copy the set of processors to each model (under the same model type) output folder.
"""
checkpoint_dir = get_checkpoint_dir(output_dir, model_arch)
processor_output_dir = os.path.join(output_dir, "processors")
# copy the (same set of) processors (for a model type) to the model arch. specific folder
if os.path.isdir(processor_output_dir):
shutil.copytree(processor_output_dir, checkpoint_dir, dirs_exist_ok=True)
tiny_config = copy.deepcopy(tiny_config)
if any([model_arch.__name__.endswith(x) for x in ["ForCausalLM", "LMHeadModel"]]):
tiny_config.is_encoder_decoder = False
tiny_config.is_decoder = True
model = model_arch(config=tiny_config)
model.save_pretrained(checkpoint_dir)
model.from_pretrained(checkpoint_dir)
return model
def fill_result_with_error(result, error, trace, models_to_create):
"""Fill `result` with errors for all target model arch if we can't build processor"""
error = (error, trace)
result["error"] = error
for framework in FRAMEWORKS:
if framework in models_to_create:
result[framework] = {}
for model_arch in models_to_create[framework]:
result[framework][model_arch.__name__] = {"model": None, "checkpoint": None, "error": error}
result["processor"] = {p.__class__.__name__: p.__class__.__name__ for p in result["processor"].values()}
def upload_model(model_dir, organization, token):
"""Upload the tiny models"""
arch_name = model_dir.split(os.path.sep)[-1]
repo_name = f"tiny-random-{arch_name}"
repo_id = f"{organization}/{repo_name}"
repo_exist = False
error = None
try:
create_repo(repo_id=repo_id, exist_ok=False, repo_type="model", token=token)
except Exception as e:
error = e
if "You already created" in str(e):
error = None
logger.warning("Remote repository exists and will be cloned.")
repo_exist = True
try:
create_repo(repo_id=repo_id, exist_ok=True, repo_type="model", token=token)
except Exception as e:
error = e
if error is not None:
raise error
with tempfile.TemporaryDirectory() as tmpdir:
repo = Repository(local_dir=tmpdir, clone_from=repo_id, token=token)
repo.git_pull()
shutil.copytree(model_dir, tmpdir, dirs_exist_ok=True)
if repo_exist:
# Open a PR on the existing Hub repo.
hub_pr_url = upload_folder(
folder_path=model_dir,
repo_id=repo_id,
repo_type="model",
commit_message=f"Update tiny models for {arch_name}",
commit_description=f"Upload tiny models for {arch_name}",
create_pr=True,
token=token,
)
logger.warning(f"PR open in {hub_pr_url}.")
# TODO: We need this information?
else:
# Push to Hub repo directly
repo.git_add(auto_lfs_track=True)
repo.git_commit(f"Upload tiny models for {arch_name}")
repo.git_push(blocking=True) # this prints a progress bar with the upload
logger.warning(f"Tiny models {arch_name} pushed to {repo_id}.")
def build_composite_models(config_class, output_dir):
import tempfile
from transformers import (
BertConfig,
BertLMHeadModel,
BertModel,
BertTokenizer,
BertTokenizerFast,
EncoderDecoderModel,
GPT2Config,
GPT2LMHeadModel,
GPT2Tokenizer,
GPT2TokenizerFast,
SpeechEncoderDecoderModel,
TFEncoderDecoderModel,
TFVisionEncoderDecoderModel,
TFVisionTextDualEncoderModel,
VisionEncoderDecoderModel,
VisionTextDualEncoderModel,
ViTConfig,
ViTFeatureExtractor,
ViTModel,
Wav2Vec2Config,
Wav2Vec2Model,
Wav2Vec2Processor,
)
# These will be removed at the end if they are empty
result = {"error": None, "warnings": []}
if config_class.model_type == "encoder-decoder":
encoder_config_class = BertConfig
decoder_config_class = BertConfig
encoder_processor = (BertTokenizerFast, BertTokenizer)
decoder_processor = (BertTokenizerFast, BertTokenizer)
encoder_class = BertModel
decoder_class = BertLMHeadModel
model_class = EncoderDecoderModel
tf_model_class = TFEncoderDecoderModel
elif config_class.model_type == "vision-encoder-decoder":
encoder_config_class = ViTConfig
decoder_config_class = GPT2Config
encoder_processor = (ViTFeatureExtractor,)
decoder_processor = (GPT2TokenizerFast, GPT2Tokenizer)
encoder_class = ViTModel
decoder_class = GPT2LMHeadModel
model_class = VisionEncoderDecoderModel
tf_model_class = TFVisionEncoderDecoderModel
elif config_class.model_type == "speech-encoder-decoder":
encoder_config_class = Wav2Vec2Config
decoder_config_class = BertConfig
encoder_processor = (Wav2Vec2Processor,)
decoder_processor = (BertTokenizerFast, BertTokenizer)
encoder_class = Wav2Vec2Model
decoder_class = BertLMHeadModel
model_class = SpeechEncoderDecoderModel
tf_model_class = None
elif config_class.model_type == "vision-text-dual-encoder":
# Not encoder-decoder, but encoder-encoder. We just keep the same name as above to make code easier
encoder_config_class = ViTConfig
decoder_config_class = BertConfig
encoder_processor = (ViTFeatureExtractor,)
decoder_processor = (BertTokenizerFast, BertTokenizer)
encoder_class = ViTModel
decoder_class = BertModel
model_class = VisionTextDualEncoderModel
tf_model_class = TFVisionTextDualEncoderModel
with tempfile.TemporaryDirectory() as tmpdir:
try:
# build encoder
models_to_create = {"processor": encoder_processor, "pytorch": (encoder_class,), "tensorflow": []}
encoder_output_dir = os.path.join(tmpdir, "encoder")
build(encoder_config_class, models_to_create, encoder_output_dir)
# build decoder
models_to_create = {"processor": decoder_processor, "pytorch": (decoder_class,), "tensorflow": []}
decoder_output_dir = os.path.join(tmpdir, "decoder")
build(decoder_config_class, models_to_create, decoder_output_dir)
# build encoder-decoder
encoder_path = os.path.join(encoder_output_dir, encoder_class.__name__)
decoder_path = os.path.join(decoder_output_dir, decoder_class.__name__)
if config_class.model_type != "vision-text-dual-encoder":
# Specify these explicitly for encoder-decoder like models, but not for `vision-text-dual-encoder` as it
# has no decoder.
decoder_config = decoder_config_class.from_pretrained(decoder_path)
decoder_config.is_decoder = True
decoder_config.add_cross_attention = True
model = model_class.from_encoder_decoder_pretrained(
encoder_path,
decoder_path,
decoder_config=decoder_config,
)
elif config_class.model_type == "vision-text-dual-encoder":
model = model_class.from_vision_text_pretrained(encoder_path, decoder_path)
model_path = os.path.join(
output_dir,
f"{model_class.__name__}-{encoder_config_class.model_type}-{decoder_config_class.model_type}",
)
model.save_pretrained(model_path)
if tf_model_class is not None:
model = tf_model_class.from_pretrained(model_path, from_pt=True)
model.save_pretrained(model_path)
# copy the processors
encoder_processor_path = os.path.join(encoder_output_dir, "processors")
decoder_processor_path = os.path.join(decoder_output_dir, "processors")
if os.path.isdir(encoder_processor_path):
shutil.copytree(encoder_processor_path, model_path, dirs_exist_ok=True)
if os.path.isdir(decoder_processor_path):
shutil.copytree(decoder_processor_path, model_path, dirs_exist_ok=True)
# fill `result`
result["processor"] = {x.__name__: x.__name__ for x in encoder_processor + decoder_processor}
result["pytorch"] = {model_class.__name__: {"model": model_class.__name__, "checkpoint": model_path}}
result["tensorflow"] = {}
if tf_model_class is not None:
result["tensorflow"] = {
tf_model_class.__name__: {"model": tf_model_class.__name__, "checkpoint": model_path}
}
except Exception:
result["error"] = (
f"Failed to build models for {config_class.__name__}.",
traceback.format_exc(),
)
if not result["error"]:
del result["error"]
if not result["warnings"]:
del result["warnings"]
return result
def get_token_id_from_tokenizer(token_id_name, tokenizer, original_token_id):
"""Use `tokenizer` to get the values of `bos_token_id`, `eos_token_ids`, etc.
The argument `token_id_name` should be a string ending with `_token_id`, and `original_token_id` should be an
integer that will be return if `tokenizer` has no token corresponding to `token_id_name`.
"""
token_id = original_token_id
if not token_id_name.endswith("_token_id"):
raise ValueError(f"`token_id_name` is {token_id_name}, which doesn't end with `_token_id`!")
token = getattr(tokenizer, token_id_name.replace("_token_id", "_token"), None)
if token is not None:
if isinstance(tokenizer, PreTrainedTokenizerFast):
token_id = tokenizer._convert_token_to_id_with_added_voc(token)
else:
token_id = tokenizer._convert_token_to_id(token)
return token_id
def get_config_overrides(config_class, processors):
config_overrides = {}
# Check if there is any tokenizer (prefer fast version if any)
tokenizer = None
for processor in processors:
if isinstance(processor, PreTrainedTokenizerFast):
tokenizer = processor
break
elif isinstance(processor, PreTrainedTokenizer):
tokenizer = processor
if tokenizer is None:
return config_overrides
# Get some properties of the (already converted) tokenizer (smaller vocab size, special token ids, etc.)
# We use `len(tokenizer)` instead of `tokenizer.vocab_size` to avoid potential issues for tokenizers with non-empty
# `added_tokens_encoder`. One example is the `DebertaV2Tokenizer` where the mask token is the extra token.
vocab_size = len(tokenizer)
# The original checkpoint has length `35998`, but it doesn't have ids `30400` and `30514` but instead `35998` and
# `35999`.
if config_class.__name__ == "GPTSanJapaneseConfig":
vocab_size += 2
config_overrides["vocab_size"] = vocab_size
# Used to create a new model tester with `tokenizer.vocab_size` in order to get the (updated) special token ids.
model_tester_kwargs = {"vocab_size": vocab_size}
# CLIP-like models have `text_model_tester` and `vision_model_tester`, and we need to pass `vocab_size` to
# `text_model_tester` via `text_kwargs`. The same trick is also necessary for `Flava`.
if config_class.__name__ in [
"AlignConfig",
"AltCLIPConfig",
"ChineseCLIPConfig",
"CLIPSegConfig",
"ClapConfig",
"CLIPConfig",
"GroupViTConfig",
"OwlViTConfig",
"XCLIPConfig",
"FlavaConfig",
"BlipConfig",
"Blip2Config",
]:
del model_tester_kwargs["vocab_size"]
model_tester_kwargs["text_kwargs"] = {"vocab_size": vocab_size}
# `FSMTModelTester` accepts `src_vocab_size` and `tgt_vocab_size` but not `vocab_size`.
elif config_class.__name__ == "FSMTConfig":
del model_tester_kwargs["vocab_size"]
model_tester_kwargs["src_vocab_size"] = tokenizer.src_vocab_size
model_tester_kwargs["tgt_vocab_size"] = tokenizer.tgt_vocab_size
_tiny_config = get_tiny_config(config_class, **model_tester_kwargs)
# handle the possibility of `text_config` inside `_tiny_config` for clip-like models (`owlvit`, `groupvit`, etc.)
if hasattr(_tiny_config, "text_config"):
_tiny_config = _tiny_config.text_config
# Collect values of some special token ids
for attr in dir(_tiny_config):
if attr.endswith("_token_id"):
token_id = getattr(_tiny_config, attr)
if token_id is not None:
# Using the token id values from `tokenizer` instead of from `_tiny_config`.
token_id = get_token_id_from_tokenizer(attr, tokenizer, original_token_id=token_id)
config_overrides[attr] = token_id
if config_class.__name__ == "FSMTConfig":
config_overrides["src_vocab_size"] = tokenizer.src_vocab_size
config_overrides["tgt_vocab_size"] = tokenizer.tgt_vocab_size
# `FSMTConfig` has `DecoderConfig` as `decoder` attribute.
config_overrides["decoder"] = configuration_fsmt.DecoderConfig(
vocab_size=tokenizer.tgt_vocab_size, bos_token_id=config_overrides["eos_token_id"]
)
return config_overrides
def build(config_class, models_to_create, output_dir):
"""Create all models for a certain model type.
Args:
config_class (`PretrainedConfig`):
A subclass of `PretrainedConfig` that is used to determine `models_to_create`.
models_to_create (`dict`):
A dictionary containing the processor/model classes that we want to create the instances. These models are
of the same model type which is associated to `config_class`.
output_dir (`str`):
The directory to save all the checkpoints. Each model architecture will be saved in a subdirectory under
it. Models in different frameworks with the same architecture will be saved in the same subdirectory.
"""
if data["training_ds"] is None or data["testing_ds"] is None:
ds = load_dataset("wikitext", "wikitext-2-raw-v1")
data["training_ds"] = ds["train"]
data["testing_ds"] = ds["test"]
if config_class.model_type in [
"encoder-decoder",
"vision-encoder-decoder",
"speech-encoder-decoder",
"vision-text-dual-encoder",
]:
return build_composite_models(config_class, output_dir)
result = {k: {} for k in models_to_create}
# These will be removed at the end if they are empty
result["error"] = None
result["warnings"] = []
# Build processors
processor_classes = models_to_create["processor"]
if len(processor_classes) == 0:
error = f"No processor class could be found in {config_class.__name__}."
fill_result_with_error(result, error, None, models_to_create)
logger.error(result["error"][0])
return result
for processor_class in processor_classes:
try:
processor = build_processor(config_class, processor_class, allow_no_checkpoint=True)
if processor is not None:
result["processor"][processor_class] = processor
except Exception:
error = f"Failed to build processor for {processor_class.__name__}."
trace = traceback.format_exc()
fill_result_with_error(result, error, trace, models_to_create)
logger.error(result["error"][0])
return result
if len(result["processor"]) == 0:
error = f"No processor could be built for {config_class.__name__}."
fill_result_with_error(result, error, None, models_to_create)
logger.error(result["error"][0])
return result
try:
tiny_config = get_tiny_config(config_class)
except Exception as e:
error = f"Failed to get tiny config for {config_class.__name__}: {e}"
trace = traceback.format_exc()
fill_result_with_error(result, error, trace, models_to_create)
logger.error(result["error"][0])
return result
# Convert the processors (reduce vocabulary size, smaller image size, etc.)
processors = list(result["processor"].values())
processor_output_folder = os.path.join(output_dir, "processors")
try:
processors = convert_processors(processors, tiny_config, processor_output_folder, result)
except Exception:
error = "Failed to convert the processors."
trace = traceback.format_exc()
result["warnings"].append((error, trace))
if len(processors) == 0:
error = f"No processor is returned by `convert_processors` for {config_class.__name__}."
fill_result_with_error(result, error, None, models_to_create)
logger.error(result["error"][0])
return result
try:
config_overrides = get_config_overrides(config_class, processors)
except Exception as e:
error = f"Failure occurs while calling `get_config_overrides`: {e}"
trace = traceback.format_exc()
fill_result_with_error(result, error, trace, models_to_create)
logger.error(result["error"][0])
return result
# Just for us to see this easily in the report
if "vocab_size" in config_overrides:
result["vocab_size"] = config_overrides["vocab_size"]
# Update attributes that `vocab_size` involves
for k, v in config_overrides.items():
if hasattr(tiny_config, k):
setattr(tiny_config, k, v)
# So far, we only have to deal with `text_config`, as `config_overrides` contains text-related attributes only.
elif (
hasattr(tiny_config, "text_config")
and tiny_config.text_config is not None
and hasattr(tiny_config.text_config, k)
):
setattr(tiny_config.text_config, k, v)
# If `text_config_dict` exists, we need to update its value here too in order to # make
# `save_pretrained -> from_pretrained` work.
if hasattr(tiny_config, "text_config_dict"):
tiny_config.text_config_dict[k] = v
if result["warnings"]:
logger.warning(result["warnings"][0][0])
# update `result["processor"]`
result["processor"] = {type(p).__name__: p.__class__.__name__ for p in processors}
for pytorch_arch in models_to_create["pytorch"]:
result["pytorch"][pytorch_arch.__name__] = {}
error = None
try:
model = build_model(pytorch_arch, tiny_config, output_dir=output_dir)
except Exception as e:
model = None
error = f"Failed to create the pytorch model for {pytorch_arch}: {e}"
trace = traceback.format_exc()
result["pytorch"][pytorch_arch.__name__]["model"] = model.__class__.__name__ if model is not None else None
result["pytorch"][pytorch_arch.__name__]["checkpoint"] = (
get_checkpoint_dir(output_dir, pytorch_arch) if model is not None else None
)
if error is not None:
result["pytorch"][pytorch_arch.__name__]["error"] = (error, trace)
logger.error(f"{pytorch_arch.__name__}: {error}")
for tensorflow_arch in models_to_create["tensorflow"]:
# Make PT/TF weights compatible
pt_arch_name = tensorflow_arch.__name__[2:] # Remove `TF`
pt_arch = getattr(transformers_module, pt_arch_name)
result["tensorflow"][tensorflow_arch.__name__] = {}
error = None
if pt_arch.__name__ in result["pytorch"] and result["pytorch"][pt_arch.__name__]["checkpoint"] is not None:
ckpt = get_checkpoint_dir(output_dir, pt_arch)
# Use the same weights from PyTorch.
try:
model = tensorflow_arch.from_pretrained(ckpt, from_pt=True)
model.save_pretrained(ckpt)
except Exception as e:
# Conversion may fail. Let's not create a model with different weights to avoid confusion (for now).
model = None
error = f"Failed to convert the pytorch model to the tensorflow model for {pt_arch}: {e}"
trace = traceback.format_exc()
else:
try:
model = build_model(tensorflow_arch, tiny_config, output_dir=output_dir)
except Exception as e:
model = None
error = f"Failed to create the tensorflow model for {tensorflow_arch}: {e}"
trace = traceback.format_exc()
result["tensorflow"][tensorflow_arch.__name__]["model"] = (
model.__class__.__name__ if model is not None else None
)
result["tensorflow"][tensorflow_arch.__name__]["checkpoint"] = (
get_checkpoint_dir(output_dir, tensorflow_arch) if model is not None else None
)
if error is not None:
result["tensorflow"][tensorflow_arch.__name__]["error"] = (error, trace)
logger.error(f"{tensorflow_arch.__name__}: {error}")
if not result["error"]:
del result["error"]
if not result["warnings"]:
del result["warnings"]
return result
def build_tiny_model_summary(results, organization=None, token=None):
"""Build a summary: a dictionary of the form
{
model architecture name:
{
"tokenizer_classes": [...],
"processor_classes": [...],
"model_classes": [...],
}
..
}
"""
tiny_model_summary = {}
for config_name in results:
processors = [key for key, value in results[config_name]["processor"].items()]
tokenizer_classes = sorted([x for x in processors if x.endswith("TokenizerFast") or x.endswith("Tokenizer")])
processor_classes = sorted([x for x in processors if x not in tokenizer_classes])
for framework in FRAMEWORKS:
if framework not in results[config_name]:
continue
for arch_name in results[config_name][framework]:
model_classes = [arch_name]
base_arch_name = arch_name[2:] if arch_name.startswith("TF") else arch_name
# tiny model is not created for `arch_name`
if results[config_name][framework][arch_name]["model"] is None:
model_classes = []
if base_arch_name not in tiny_model_summary:
tiny_model_summary[base_arch_name] = {}
tiny_model_summary[base_arch_name].update(
{
"tokenizer_classes": tokenizer_classes,
"processor_classes": processor_classes,
}
)
tiny_model_summary[base_arch_name]["model_classes"] = sorted(
tiny_model_summary[base_arch_name].get("model_classes", []) + model_classes
)
if organization is not None:
repo_name = f"tiny-random-{base_arch_name}"
# composite models' checkpoints have more precise repo. names on the Hub.
if base_arch_name in COMPOSITE_MODELS:
repo_name = f"tiny-random-{COMPOSITE_MODELS[base_arch_name]}"
repo_id = f"{organization}/{repo_name}"
try:
commit_hash = hf_api.repo_info(repo_id, token=token).sha
except Exception:
# The directory is not created, but processor(s) is/are included in `results`.
logger.warning(f"Failed to get information for {repo_id}.\n{traceback.format_exc()}")
del tiny_model_summary[base_arch_name]
continue
tiny_model_summary[base_arch_name]["sha"] = commit_hash
return tiny_model_summary
def build_failed_report(results, include_warning=True):
failed_results = {}
for config_name in results:
if "error" in results[config_name]:
if config_name not in failed_results:
failed_results[config_name] = {}
failed_results[config_name] = {"error": results[config_name]["error"]}
if include_warning and "warnings" in results[config_name]:
if config_name not in failed_results:
failed_results[config_name] = {}
failed_results[config_name]["warnings"] = results[config_name]["warnings"]
for framework in FRAMEWORKS:
if framework not in results[config_name]:
continue
for arch_name in results[config_name][framework]:
if "error" in results[config_name][framework][arch_name]:
if config_name not in failed_results:
failed_results[config_name] = {}
if framework not in failed_results[config_name]:
failed_results[config_name][framework] = {}
if arch_name not in failed_results[config_name][framework]:
failed_results[config_name][framework][arch_name] = {}
error = results[config_name][framework][arch_name]["error"]
failed_results[config_name][framework][arch_name]["error"] = error
return failed_results
def build_simple_report(results):
text = ""
failed_text = ""
for config_name in results:
for framework in FRAMEWORKS:
if framework not in results[config_name]:
continue
for arch_name in results[config_name][framework]:
if "error" in results[config_name][framework][arch_name]:
result = results[config_name][framework][arch_name]["error"]
failed_text += f"{arch_name}: {result[0]}\n"
else:
result = ("OK",)
text += f"{arch_name}: {result[0]}\n"
return text, failed_text
def update_tiny_model_summary_file(report_path):
with open(os.path.join(report_path, "tiny_model_summary.json")) as fp:
new_data = json.load(fp)
with open("tests/utils/tiny_model_summary.json") as fp:
data = json.load(fp)
for key, value in new_data.items():
if key not in data:
data[key] = value
else:
for attr in ["tokenizer_classes", "processor_classes", "model_classes"]:
# we might get duplication here. We will remove them below when creating `updated_data`.
data[key][attr].extend(value[attr])
new_sha = value.get("sha", None)
if new_sha is not None:
data[key]["sha"] = new_sha
updated_data = {}
for key in sorted(data.keys()):
updated_data[key] = {}
for attr, value in data[key].items():
# deduplication and sort
updated_data[key][attr] = sorted(set(value)) if attr != "sha" else value
with open(os.path.join(report_path, "updated_tiny_model_summary.json"), "w") as fp:
json.dump(updated_data, fp, indent=4, ensure_ascii=False)
def create_tiny_models(
output_path,
all,
model_types,
models_to_skip,
no_check,
upload,
organization,
token,
num_workers=1,
):
clone_path = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
if os.getcwd() != clone_path:
raise ValueError(f"This script should be run from the root of the clone of `transformers` {clone_path}")
report_path = os.path.join(output_path, "reports")
os.makedirs(report_path)
_pytorch_arch_mappings = [
x
for x in dir(transformers_module)
if x.startswith("MODEL_") and x.endswith("_MAPPING") and x != "MODEL_NAMES_MAPPING"
]
_tensorflow_arch_mappings = [
x for x in dir(transformers_module) if x.startswith("TF_MODEL_") and x.endswith("_MAPPING")
]
pytorch_arch_mappings = [getattr(transformers_module, x) for x in _pytorch_arch_mappings]
tensorflow_arch_mappings = [getattr(transformers_module, x) for x in _tensorflow_arch_mappings]
config_classes = CONFIG_MAPPING.values()
if not all:
config_classes = [CONFIG_MAPPING[model_type] for model_type in model_types]
# A map from config classes to tuples of processors (tokenizer, feature extractor, processor) classes
processor_type_map = {c: get_processor_types_from_config_class(c) for c in config_classes}
to_create = {}
for c in config_classes:
processors = processor_type_map[c]
models = get_architectures_from_config_class(c, pytorch_arch_mappings, models_to_skip)
tf_models = get_architectures_from_config_class(c, tensorflow_arch_mappings, models_to_skip)
if len(models) + len(tf_models) > 0:
to_create[c] = {"processor": processors, "pytorch": models, "tensorflow": tf_models}
results = {}
if num_workers <= 1:
for c, models_to_create in list(to_create.items()):
print(f"Create models for {c.__name__} ...")
result = build(c, models_to_create, output_dir=os.path.join(output_path, c.model_type))
results[c.__name__] = result
print("=" * 40)
else:
all_build_args = []
for c, models_to_create in list(to_create.items()):
all_build_args.append((c, models_to_create, os.path.join(output_path, c.model_type)))
with multiprocessing.Pool() as pool:
results = pool.starmap(build, all_build_args)
results = {buid_args[0].__name__: result for buid_args, result in zip(all_build_args, results)}
if upload:
if organization is None:
raise ValueError("The argument `organization` could not be `None`. No model is uploaded")
to_upload = []
for model_type in os.listdir(output_path):
# This is the directory containing the reports
if model_type == "reports":
continue
for arch in os.listdir(os.path.join(output_path, model_type)):
if arch == "processors":
continue
to_upload.append(os.path.join(output_path, model_type, arch))
to_upload = sorted(to_upload)
upload_results = {}
if len(to_upload) > 0:
for model_dir in to_upload:
try:
upload_model(model_dir, organization, token)
except Exception as e:
error = f"Failed to upload {model_dir}. {e.__class__.__name__}: {e}"
logger.error(error)
upload_results[model_dir] = error
with open(os.path.join(report_path, "failed_uploads.json"), "w") as fp:
json.dump(upload_results, fp, indent=4)
# Build the tiny model summary file. The `tokenizer_classes` and `processor_classes` could be both empty lists.
# When using the items in this file to update the file `tests/utils/tiny_model_summary.json`, the model
# architectures with `tokenizer_classes` and `processor_classes` being both empty should **NOT** be added to
# `tests/utils/tiny_model_summary.json`.
tiny_model_summary = build_tiny_model_summary(results, organization=organization, token=token)
with open(os.path.join(report_path, "tiny_model_summary.json"), "w") as fp:
json.dump(tiny_model_summary, fp, indent=4)
with open(os.path.join(report_path, "tiny_model_creation_report.json"), "w") as fp:
json.dump(results, fp, indent=4)
# Build the warning/failure report (json format): same format as the complete `results` except this contains only
# warnings or errors.
failed_results = build_failed_report(results)
with open(os.path.join(report_path, "failed_report.json"), "w") as fp:
json.dump(failed_results, fp, indent=4)
simple_report, failed_report = build_simple_report(results)
# The simplified report: a .txt file with each line of format:
# {model architecture name}: {OK or error message}
with open(os.path.join(report_path, "simple_report.txt"), "w") as fp:
fp.write(simple_report)
# The simplified failure report: same above except this only contains line with errors
with open(os.path.join(report_path, "simple_failed_report.txt"), "w") as fp:
fp.write(failed_report)
update_tiny_model_summary_file(report_path=os.path.join(output_path, "reports"))
if __name__ == "__main__":
# This has to be `spawn` to avoid hanging forever!
multiprocessing.set_start_method("spawn")
def list_str(values):
return values.split(",")
parser = argparse.ArgumentParser()
parser.add_argument("--all", action="store_true", help="Will create all tiny models.")
parser.add_argument(
"--no_check",
action="store_true",
help="If set, will not check the validity of architectures. Use with caution.",
)
parser.add_argument(
"-m",
"--model_types",
type=list_str,
help="Comma-separated list of model type(s) from which the tiny models will be created.",
)
parser.add_argument(
"--models_to_skip",
type=list_str,
help=(
"Comma-separated list of model class names(s) from which the tiny models won't be created.\nThis is usually"
"the list of model classes that have their tiny versions already uploaded to the Hub."
),
)
parser.add_argument("--upload", action="store_true", help="If to upload the created tiny models to the Hub.")
parser.add_argument(
"--organization",
default=None,
type=str,
help="The organization on the Hub to which the tiny models will be uploaded.",
)
parser.add_argument(
"--token", default=None, type=str, help="A valid authentication token for HuggingFace Hub with write access."
)
parser.add_argument("output_path", type=Path, help="Path indicating where to store generated model.")
parser.add_argument("--num_workers", default=1, type=int, help="The number of workers to run.")
args = parser.parse_args()
if not args.all and not args.model_types:
raise ValueError("Please provide at least one model type or pass `--all` to export all architectures.")
create_tiny_models(
args.output_path,
args.all,
args.model_types,
args.models_to_skip,
args.no_check,
args.upload,
args.organization,
args.token,
args.num_workers,
)
|