Spaces:
Runtime error
Runtime error
File size: 14,406 Bytes
a1d409e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# BERT
<div class="flex flex-wrap space-x-1">
<a href="https://huggingface.co/models?filter=bert">
<img alt="Models" src="https://img.shields.io/badge/All_model_pages-bert-blueviolet">
</a>
<a href="https://huggingface.co/spaces/docs-demos/bert-base-uncased">
<img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue">
</a>
</div>
## Overview
The BERT model was proposed in [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a
bidirectional transformer pretrained using a combination of masked language modeling objective and next sentence
prediction on a large corpus comprising the Toronto Book Corpus and Wikipedia.
The abstract from the paper is the following:
*We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations
from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional
representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result,
the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models
for a wide range of tasks, such as question answering and language inference, without substantial task-specific
architecture modifications.*
*BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural
language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI
accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute
improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).*
Tips:
- BERT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
the left.
- BERT was trained with the masked language modeling (MLM) and next sentence prediction (NSP) objectives. It is
efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation.
- Corrupts the inputs by using random masking, more precisely, during pretraining, a given percentage of tokens (usually 15%) is masked by:
* a special mask token with probability 0.8
* a random token different from the one masked with probability 0.1
* the same token with probability 0.1
- The model must predict the original sentence, but has a second objective: inputs are two sentences A and B (with a separation token in between). With probability 50%, the sentences are consecutive in the corpus, in the remaining 50% they are not related. The model has to predict if the sentences are consecutive or not.
This model was contributed by [thomwolf](https://huggingface.co/thomwolf). The original code can be found [here](https://github.com/google-research/bert).
## Resources
A list of official Hugging Face and community (indicated by π) resources to help you get started with BERT. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
<PipelineTag pipeline="text-classification"/>
- A blog post on [BERT Text Classification in a different language](https://www.philschmid.de/bert-text-classification-in-a-different-language).
- A notebook for [Finetuning BERT (and friends) for multi-label text classification](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/BERT/Fine_tuning_BERT_(and_friends)_for_multi_label_text_classification.ipynb).
- A notebook on how to [Finetune BERT for multi-label classification using PyTorch](https://colab.research.google.com/github/abhimishra91/transformers-tutorials/blob/master/transformers_multi_label_classification.ipynb). π
- A notebook on how to [warm-start an EncoderDecoder model with BERT for summarization](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/BERT2BERT_for_CNN_Dailymail.ipynb).
- [`BertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb).
- [`TFBertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb).
- [`FlaxBertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb).
- [Text classification task guide](../tasks/sequence_classification)
<PipelineTag pipeline="token-classification"/>
- A blog post on how to use [Hugging Face Transformers with Keras: Fine-tune a non-English BERT for Named Entity Recognition](https://www.philschmid.de/huggingface-transformers-keras-tf).
- A notebook for [Finetuning BERT for named-entity recognition](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/Custom_Named_Entity_Recognition_with_BERT_only_first_wordpiece.ipynb) using only the first wordpiece of each word in the word label during tokenization. To propagate the label of the word to all wordpieces, see this [version](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/BERT/Custom_Named_Entity_Recognition_with_BERT.ipynb) of the notebook instead.
- [`BertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb).
- [`TFBertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).
- [`FlaxBertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/token-classification).
- [Token classification](https://huggingface.co/course/chapter7/2?fw=pt) chapter of the π€ Hugging Face Course.
- [Token classification task guide](../tasks/token_classification)
<PipelineTag pipeline="fill-mask"/>
- [`BertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
- [`TFBertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
- [`FlaxBertForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb).
- [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the π€ Hugging Face Course.
- [Masked language modeling task guide](../tasks/masked_language_modeling)
<PipelineTag pipeline="question-answering"/>
- [`BertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb).
- [`TFBertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb).
- [`FlaxBertForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/question-answering).
- [Question answering](https://huggingface.co/course/chapter7/7?fw=pt) chapter of the π€ Hugging Face Course.
- [Question answering task guide](../tasks/question_answering)
**Multiple choice**
- [`BertForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb).
- [`TFBertForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb).
- [Multiple choice task guide](../tasks/multiple_choice)
β‘οΈ **Inference**
- A blog post on how to [Accelerate BERT inference with Hugging Face Transformers and AWS Inferentia](https://huggingface.co/blog/bert-inferentia-sagemaker).
- A blog post on how to [Accelerate BERT inference with DeepSpeed-Inference on GPUs](https://www.philschmid.de/bert-deepspeed-inference).
βοΈ **Pretraining**
- A blog post on [Pre-Training BERT with Hugging Face Transformers and Habana Gaudi](https://www.philschmid.de/pre-training-bert-habana).
π **Deploy**
- A blog post on how to [Convert Transformers to ONNX with Hugging Face Optimum](https://www.philschmid.de/convert-transformers-to-onnx).
- A blog post on how to [Setup Deep Learning environment for Hugging Face Transformers with Habana Gaudi on AWS](https://www.philschmid.de/getting-started-habana-gaudi#conclusion).
- A blog post on [Autoscaling BERT with Hugging Face Transformers, Amazon SageMaker and Terraform module](https://www.philschmid.de/terraform-huggingface-amazon-sagemaker-advanced).
- A blog post on [Serverless BERT with HuggingFace, AWS Lambda, and Docker](https://www.philschmid.de/serverless-bert-with-huggingface-aws-lambda-docker).
- A blog post on [Hugging Face Transformers BERT fine-tuning using Amazon SageMaker and Training Compiler](https://www.philschmid.de/huggingface-amazon-sagemaker-training-compiler).
- A blog post on [Task-specific knowledge distillation for BERT using Transformers & Amazon SageMaker](https://www.philschmid.de/knowledge-distillation-bert-transformers).
## BertConfig
[[autodoc]] BertConfig
- all
## BertTokenizer
[[autodoc]] BertTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## BertTokenizerFast
[[autodoc]] BertTokenizerFast
## TFBertTokenizer
[[autodoc]] TFBertTokenizer
## Bert specific outputs
[[autodoc]] models.bert.modeling_bert.BertForPreTrainingOutput
[[autodoc]] models.bert.modeling_tf_bert.TFBertForPreTrainingOutput
[[autodoc]] models.bert.modeling_flax_bert.FlaxBertForPreTrainingOutput
## BertModel
[[autodoc]] BertModel
- forward
## BertForPreTraining
[[autodoc]] BertForPreTraining
- forward
## BertLMHeadModel
[[autodoc]] BertLMHeadModel
- forward
## BertForMaskedLM
[[autodoc]] BertForMaskedLM
- forward
## BertForNextSentencePrediction
[[autodoc]] BertForNextSentencePrediction
- forward
## BertForSequenceClassification
[[autodoc]] BertForSequenceClassification
- forward
## BertForMultipleChoice
[[autodoc]] BertForMultipleChoice
- forward
## BertForTokenClassification
[[autodoc]] BertForTokenClassification
- forward
## BertForQuestionAnswering
[[autodoc]] BertForQuestionAnswering
- forward
## TFBertModel
[[autodoc]] TFBertModel
- call
## TFBertForPreTraining
[[autodoc]] TFBertForPreTraining
- call
## TFBertModelLMHeadModel
[[autodoc]] TFBertLMHeadModel
- call
## TFBertForMaskedLM
[[autodoc]] TFBertForMaskedLM
- call
## TFBertForNextSentencePrediction
[[autodoc]] TFBertForNextSentencePrediction
- call
## TFBertForSequenceClassification
[[autodoc]] TFBertForSequenceClassification
- call
## TFBertForMultipleChoice
[[autodoc]] TFBertForMultipleChoice
- call
## TFBertForTokenClassification
[[autodoc]] TFBertForTokenClassification
- call
## TFBertForQuestionAnswering
[[autodoc]] TFBertForQuestionAnswering
- call
## FlaxBertModel
[[autodoc]] FlaxBertModel
- __call__
## FlaxBertForPreTraining
[[autodoc]] FlaxBertForPreTraining
- __call__
## FlaxBertForCausalLM
[[autodoc]] FlaxBertForCausalLM
- __call__
## FlaxBertForMaskedLM
[[autodoc]] FlaxBertForMaskedLM
- __call__
## FlaxBertForNextSentencePrediction
[[autodoc]] FlaxBertForNextSentencePrediction
- __call__
## FlaxBertForSequenceClassification
[[autodoc]] FlaxBertForSequenceClassification
- __call__
## FlaxBertForMultipleChoice
[[autodoc]] FlaxBertForMultipleChoice
- __call__
## FlaxBertForTokenClassification
[[autodoc]] FlaxBertForTokenClassification
- __call__
## FlaxBertForQuestionAnswering
[[autodoc]] FlaxBertForQuestionAnswering
- __call__
|