Spaces:
Runtime error
Runtime error
File size: 21,726 Bytes
a1d409e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import unittest
import numpy as np
from transformers.data.data_collator import default_data_collator
from transformers.testing_utils import require_accelerate, require_torch
from transformers.trainer_utils import RemoveColumnsCollator, find_executable_batch_size
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import IterableDataset
from transformers.modeling_outputs import SequenceClassifierOutput
from transformers.tokenization_utils_base import BatchEncoding
from transformers.trainer_pt_utils import (
DistributedLengthGroupedSampler,
DistributedSamplerWithLoop,
DistributedTensorGatherer,
IterableDatasetShard,
LabelSmoother,
LengthGroupedSampler,
SequentialDistributedSampler,
ShardSampler,
get_parameter_names,
numpy_pad_and_concatenate,
torch_pad_and_concatenate,
)
class TstLayer(nn.Module):
def __init__(self, hidden_size):
super().__init__()
self.linear1 = nn.Linear(hidden_size, hidden_size)
self.ln1 = nn.LayerNorm(hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.ln2 = nn.LayerNorm(hidden_size)
self.bias = nn.Parameter(torch.zeros(hidden_size))
def forward(self, x):
h = self.ln1(nn.functional.relu(self.linear1(x)))
h = nn.functional.relu(self.linear2(x))
return self.ln2(x + h + self.bias)
class RandomIterableDataset(IterableDataset):
# For testing, an iterable dataset of random length
def __init__(self, p_stop=0.01, max_length=1000):
self.p_stop = p_stop
self.max_length = max_length
self.generator = torch.Generator()
def __iter__(self):
count = 0
stop = False
while not stop and count < self.max_length:
yield count
count += 1
number = torch.rand(1, generator=self.generator).item()
stop = number < self.p_stop
@require_torch
class TrainerUtilsTest(unittest.TestCase):
def test_distributed_tensor_gatherer(self):
# Simulate a result with a dataset of size 21, 4 processes and chunks of lengths 2, 3, 1
world_size = 4
num_samples = 21
input_indices = [
[0, 1, 6, 7, 12, 13, 18, 19],
[2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 0, 1],
[5, 11, 17, 2],
]
predictions = np.random.normal(size=(num_samples, 13))
gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
for indices in input_indices:
gatherer.add_arrays(predictions[indices])
result = gatherer.finalize()
self.assertTrue(np.array_equal(result, predictions))
# With nested tensors
gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
for indices in input_indices:
gatherer.add_arrays([predictions[indices], [predictions[indices], predictions[indices]]])
result = gatherer.finalize()
self.assertTrue(isinstance(result, list))
self.assertEqual(len(result), 2)
self.assertTrue(isinstance(result[1], list))
self.assertEqual(len(result[1]), 2)
self.assertTrue(np.array_equal(result[0], predictions))
self.assertTrue(np.array_equal(result[1][0], predictions))
self.assertTrue(np.array_equal(result[1][1], predictions))
def test_distributed_tensor_gatherer_different_shapes(self):
# Simulate a result with a dataset of size 21, 4 processes and chunks of lengths 2, 3, 1
world_size = 4
num_samples = 21
input_indices = [
[0, 1, 6, 7, 12, 13, 18, 19],
[2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 0, 1],
[5, 11, 17, 2],
]
sequence_lengths = [8, 10, 13]
predictions = np.random.normal(size=(num_samples, 13))
gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
for indices, seq_length in zip(input_indices, sequence_lengths):
gatherer.add_arrays(predictions[indices, :seq_length])
result = gatherer.finalize()
# Remove the extra samples added at the end for a round multiple of num processes.
actual_indices = [input_indices[0], input_indices[1][:-2], input_indices[2][:-1]]
for indices, seq_length in zip(actual_indices, sequence_lengths):
self.assertTrue(np.array_equal(result[indices, :seq_length], predictions[indices, :seq_length]))
# With nested tensors
predictions = np.random.normal(size=(num_samples, 13))
gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
for indices, seq_length in zip(input_indices, sequence_lengths):
gatherer.add_arrays([predictions[indices, :seq_length], predictions[indices]])
result = gatherer.finalize()
for indices, seq_length in zip(actual_indices, sequence_lengths):
self.assertTrue(np.array_equal(result[0][indices, :seq_length], predictions[indices, :seq_length]))
self.assertTrue(np.array_equal(result[1], predictions))
# Check if works if varying seq_length is second
gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
for indices, seq_length in zip(input_indices, sequence_lengths):
gatherer.add_arrays([predictions[indices], predictions[indices, :seq_length]])
result = gatherer.finalize()
self.assertTrue(np.array_equal(result[0], predictions))
for indices, seq_length in zip(actual_indices, sequence_lengths):
self.assertTrue(np.array_equal(result[1][indices, :seq_length], predictions[indices, :seq_length]))
def test_label_smoothing(self):
epsilon = 0.1
num_labels = 12
random_logits = torch.randn(4, 5, num_labels)
random_labels = torch.randint(0, num_labels, (4, 5))
loss = nn.functional.cross_entropy(random_logits.view(-1, num_labels), random_labels.view(-1))
model_output = SequenceClassifierOutput(logits=random_logits)
label_smoothed_loss = LabelSmoother(0.1)(model_output, random_labels)
log_probs = -nn.functional.log_softmax(random_logits, dim=-1)
expected_loss = (1 - epsilon) * loss + epsilon * log_probs.mean()
self.assertTrue(torch.allclose(label_smoothed_loss, expected_loss))
# With a few -100 labels
random_labels[0, 1] = -100
random_labels[2, 1] = -100
random_labels[2, 3] = -100
loss = nn.functional.cross_entropy(random_logits.view(-1, num_labels), random_labels.view(-1))
model_output = SequenceClassifierOutput(logits=random_logits)
label_smoothed_loss = LabelSmoother(0.1)(model_output, random_labels)
log_probs = -nn.functional.log_softmax(random_logits, dim=-1)
# Mask the log probs with the -100 labels
log_probs[0, 1] = 0.0
log_probs[2, 1] = 0.0
log_probs[2, 3] = 0.0
expected_loss = (1 - epsilon) * loss + epsilon * log_probs.sum() / (num_labels * 17)
self.assertTrue(torch.allclose(label_smoothed_loss, expected_loss))
def test_group_by_length(self):
# Get some inputs of random lengths
lengths = torch.randint(0, 25, (100,)).tolist()
# Put one bigger than the others to check it ends up in first position
lengths[32] = 50
indices = list(LengthGroupedSampler(4, lengths=lengths))
# The biggest element should be first
self.assertEqual(lengths[indices[0]], 50)
# The indices should be a permutation of range(100)
self.assertEqual(sorted(indices), list(range(100)))
def test_group_by_length_with_dict(self):
# Get some inputs of random lengths
data = []
for _ in range(6):
input_ids = torch.randint(0, 25, (100,)).tolist()
data.append({"input_ids": input_ids})
# Put one bigger than the others to check it ends up in first position
data[3]["input_ids"] = torch.randint(0, 25, (105,)).tolist()
indices = list(LengthGroupedSampler(4, dataset=data))
# The biggest element should be first
self.assertEqual(len(data[indices[0]]["input_ids"]), 105)
# The indices should be a permutation of range(6)
self.assertEqual(sorted(indices), list(range(6)))
def test_group_by_length_with_batch_encoding(self):
# Get some inputs of random lengths
data = []
for _ in range(6):
input_ids = torch.randint(0, 25, (100,)).tolist()
data.append(BatchEncoding({"input_ids": input_ids}))
# Put one bigger than the others to check it ends up in first position
data[3]["input_ids"] = torch.randint(0, 25, (105,)).tolist()
indices = list(LengthGroupedSampler(4, dataset=data))
# The biggest element should be first
self.assertEqual(len(data[indices[0]]["input_ids"]), 105)
# The indices should be a permutation of range(6)
self.assertEqual(sorted(indices), list(range(6)))
def test_distributed_length_grouped(self):
# Get some inputs of random lengths
lengths = torch.randint(0, 25, (100,)).tolist()
# Put one bigger than the others to check it ends up in first position
lengths[32] = 50
indices_process_0 = list(DistributedLengthGroupedSampler(4, num_replicas=2, rank=0, lengths=lengths))
indices_process_1 = list(DistributedLengthGroupedSampler(4, num_replicas=2, rank=1, lengths=lengths))
# The biggest element should be first
self.assertEqual(lengths[indices_process_0[0]], 50)
# The indices should be a permutation of range(100)
self.assertEqual(sorted(indices_process_0 + indices_process_1), list(range(100)))
def test_get_parameter_names(self):
model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)]))
# fmt: off
self.assertEqual(
get_parameter_names(model, [nn.LayerNorm]),
['0.linear1.weight', '0.linear1.bias', '0.linear2.weight', '0.linear2.bias', '0.bias', '1.0.linear1.weight', '1.0.linear1.bias', '1.0.linear2.weight', '1.0.linear2.bias', '1.0.bias', '1.1.linear1.weight', '1.1.linear1.bias', '1.1.linear2.weight', '1.1.linear2.bias', '1.1.bias']
)
# fmt: on
def test_distributed_sampler_with_loop(self):
batch_size = 16
for length in [23, 64, 123]:
dataset = list(range(length))
shard1 = DistributedSamplerWithLoop(dataset, batch_size, num_replicas=2, rank=0)
shard2 = DistributedSamplerWithLoop(dataset, batch_size, num_replicas=2, rank=1)
# Set seeds
shard1.set_epoch(0)
shard2.set_epoch(0)
# Sample
samples1 = list(shard1)
samples2 = list(shard2)
self.assertTrue(len(samples1) % batch_size == 0)
self.assertTrue(len(samples2) % batch_size == 0)
total = []
for sample1, sample2 in zip(samples1, samples2):
total += [sample1, sample2]
self.assertEqual(set(total[:length]), set(dataset))
self.assertEqual(set(total[length:]), set(total[: (len(total) - length)]))
def test_sequential_distributed_sampler(self):
batch_size = 16
for length in [23, 64, 123]:
dataset = list(range(length))
shard1 = SequentialDistributedSampler(dataset, num_replicas=2, rank=0)
shard2 = SequentialDistributedSampler(dataset, num_replicas=2, rank=1)
# Sample
samples1 = list(shard1)
samples2 = list(shard2)
total = samples1 + samples2
self.assertListEqual(total[:length], dataset)
self.assertListEqual(total[length:], dataset[: (len(total) - length)])
# With a batch_size passed
shard1 = SequentialDistributedSampler(dataset, num_replicas=2, rank=0, batch_size=batch_size)
shard2 = SequentialDistributedSampler(dataset, num_replicas=2, rank=1, batch_size=batch_size)
# Sample
samples1 = list(shard1)
samples2 = list(shard2)
self.assertTrue(len(samples1) % batch_size == 0)
self.assertTrue(len(samples2) % batch_size == 0)
total = samples1 + samples2
self.assertListEqual(total[:length], dataset)
self.assertListEqual(total[length:], dataset[: (len(total) - length)])
def check_iterable_dataset_shard(self, dataset, batch_size, drop_last, num_processes=2, epoch=0):
# Set the seed for the base dataset to get the proper reference.
dataset.generator.manual_seed(epoch)
reference = list(dataset)
shards = [
IterableDatasetShard(
dataset, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i
)
for i in range(num_processes)
]
for shard in shards:
shard.set_epoch(epoch)
shard_lists = [list(shard) for shard in shards]
for shard in shard_lists:
# All shards have a number of samples that is a round multiple of batch size
self.assertTrue(len(shard) % batch_size == 0)
# All shards have the same number of samples
self.assertEqual(len(shard), len(shard_lists[0]))
for shard in shards:
# All shards know the total number of samples
self.assertEqual(shard.num_examples, len(reference))
observed = []
for idx in range(0, len(shard_lists[0]), batch_size):
for shard in shard_lists:
observed += shard[idx : idx + batch_size]
# If drop_last is False we loop through samples at the beginning to have a size that is a round multiple of
# batch_size
if not drop_last:
while len(reference) < len(observed):
reference += reference
self.assertListEqual(observed, reference[: len(observed)])
# Check equivalence between IterableDataset and ShardSampler
dataset.generator.manual_seed(epoch)
reference = list(dataset)
sampler_shards = [
ShardSampler(
reference, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i
)
for i in range(num_processes)
]
for shard, sampler_shard in zip(shard_lists, sampler_shards):
self.assertListEqual(shard, list(sampler_shard))
def test_iterable_dataset_shard(self):
dataset = RandomIterableDataset()
self.check_iterable_dataset_shard(dataset, 4, drop_last=True, num_processes=2, epoch=0)
self.check_iterable_dataset_shard(dataset, 4, drop_last=False, num_processes=2, epoch=0)
self.check_iterable_dataset_shard(dataset, 4, drop_last=True, num_processes=3, epoch=42)
self.check_iterable_dataset_shard(dataset, 4, drop_last=False, num_processes=3, epoch=42)
def test_iterable_dataset_shard_with_length(self):
sampler_shards = [
IterableDatasetShard(list(range(100)), batch_size=4, drop_last=True, num_processes=2, process_index=i)
for i in range(2)
]
# Build expected shards: each process will have batches of size 4 until there is not enough elements to
# form two full batches (so we stop at 96 = (100 // (4 * 2)) * 4)
expected_shards = [[], []]
current_shard = 0
for i in range(0, 96, 4):
expected_shards[current_shard].extend(list(range(i, i + 4)))
current_shard = 1 - current_shard
self.assertListEqual([list(shard) for shard in sampler_shards], expected_shards)
self.assertListEqual([len(shard) for shard in sampler_shards], [len(shard) for shard in expected_shards])
sampler_shards = [
IterableDatasetShard(list(range(100)), batch_size=4, drop_last=False, num_processes=2, process_index=i)
for i in range(2)
]
# When drop_last=False, we get two last full batches by looping back to the beginning.
expected_shards[0].extend(list(range(96, 100)))
expected_shards[1].extend(list(range(0, 4)))
self.assertListEqual([list(shard) for shard in sampler_shards], expected_shards)
self.assertListEqual([len(shard) for shard in sampler_shards], [len(shard) for shard in expected_shards])
def check_shard_sampler(self, dataset, batch_size, drop_last, num_processes=2):
shards = [
ShardSampler(
dataset, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i
)
for i in range(num_processes)
]
shard_lists = [list(shard) for shard in shards]
for shard in shard_lists:
# All shards have a number of samples that is a round multiple of batch size
self.assertTrue(len(shard) % batch_size == 0)
# All shards have the same number of samples
self.assertEqual(len(shard), len(shard_lists[0]))
observed = []
for idx in range(0, len(shard_lists[0]), batch_size):
for shard in shard_lists:
observed += shard[idx : idx + batch_size]
# If drop_last is False we loop through samples at the beginning to have a size that is a round multiple of
# batch_size
reference = copy.copy(dataset)
if not drop_last:
while len(reference) < len(observed):
reference += reference
self.assertListEqual(observed, reference[: len(observed)])
def test_shard_sampler(self):
for n_elements in [64, 123]:
dataset = list(range(n_elements))
self.check_shard_sampler(dataset, 4, drop_last=True, num_processes=2)
self.check_shard_sampler(dataset, 4, drop_last=False, num_processes=2)
self.check_shard_sampler(dataset, 4, drop_last=True, num_processes=3)
self.check_shard_sampler(dataset, 4, drop_last=False, num_processes=3)
@require_accelerate
def test_executable_batch_size(self):
batch_sizes = []
@find_executable_batch_size(starting_batch_size=64, auto_find_batch_size=True)
def mock_training_loop_function(batch_size):
nonlocal batch_sizes
batch_sizes.append(batch_size)
if batch_size > 16:
raise RuntimeError("CUDA out of memory.")
mock_training_loop_function()
self.assertEqual(batch_sizes, [64, 32, 16])
@require_accelerate
def test_executable_batch_size_no_search(self):
batch_sizes = []
@find_executable_batch_size(starting_batch_size=64, auto_find_batch_size=False)
def mock_training_loop_function(batch_size):
nonlocal batch_sizes
batch_sizes.append(batch_size)
mock_training_loop_function()
self.assertEqual(batch_sizes, [64])
@require_accelerate
def test_executable_batch_size_with_error(self):
@find_executable_batch_size(starting_batch_size=64, auto_find_batch_size=False)
def mock_training_loop_function(batch_size):
raise RuntimeError("CUDA out of memory.")
with self.assertRaises(RuntimeError) as cm:
mock_training_loop_function()
self.assertEqual("CUDA out of memory", cm.args[0])
def test_pad_and_concatenate_with_1d(self):
"""Tests whether pad_and_concatenate works with scalars."""
array1 = 1.0
array2 = 2.0
result = numpy_pad_and_concatenate(array1, array2)
self.assertTrue(np.array_equal(np.array([1.0, 2.0]), result))
tensor1 = torch.tensor(1.0)
tensor2 = torch.tensor(2.0)
result = torch_pad_and_concatenate(tensor1, tensor2)
self.assertTrue(torch.equal(result, torch.Tensor([1.0, 2.0])))
def test_remove_columns_collator(self):
class MockLogger:
def __init__(self) -> None:
self.called = 0
def info(self, msg):
self.called += 1
self.last_msg = msg
data_batch = [
{"col1": 1, "col2": 2, "col3": 3},
{"col1": 1, "col2": 2, "col3": 3},
]
logger = MockLogger()
remove_columns_collator = RemoveColumnsCollator(
default_data_collator, ["col1", "col2"], logger, "model", "training"
)
self.assertNotIn("col3", remove_columns_collator(data_batch))
# check that the logging message is printed out only once
remove_columns_collator(data_batch)
remove_columns_collator(data_batch)
self.assertEqual(logger.called, 1)
self.assertIn("col3", logger.last_msg)
|