File size: 2,513 Bytes
0b7b08a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.

import argparse
import os
import shutil
from loguru import logger

import tensorrt as trt
import torch
from torch2trt import torch2trt

from yolox.exp import get_exp


def make_parser():
    parser = argparse.ArgumentParser("YOLOX ncnn deploy")
    parser.add_argument("-expn", "--experiment-name", type=str, default=None)
    parser.add_argument("-n", "--name", type=str, default=None, help="model name")

    parser.add_argument(
        "-f",
        "--exp_file",
        default=None,
        type=str,
        help="please input your experiment description file",
    )
    parser.add_argument("-c", "--ckpt", default=None, type=str, help="ckpt path")
    parser.add_argument(
        "-w", '--workspace', type=int, default=32, help='max workspace size in detect'
    )
    parser.add_argument("-b", '--batch', type=int, default=1, help='max batch size in detect')
    return parser


@logger.catch
@torch.no_grad()
def main():
    args = make_parser().parse_args()
    exp = get_exp(args.exp_file, args.name)
    if not args.experiment_name:
        args.experiment_name = exp.exp_name

    model = exp.get_model()
    file_name = os.path.join(exp.output_dir, args.experiment_name)
    os.makedirs(file_name, exist_ok=True)
    if args.ckpt is None:
        ckpt_file = os.path.join(file_name, "best_ckpt.pth")
    else:
        ckpt_file = args.ckpt

    ckpt = torch.load(ckpt_file, map_location="cpu")
    # load the model state dict

    model.load_state_dict(ckpt["model"])
    logger.info("loaded checkpoint done.")
    model.eval()
    model.cuda()
    model.head.decode_in_inference = False
    x = torch.ones(1, 3, exp.test_size[0], exp.test_size[1]).cuda()
    model_trt = torch2trt(
        model,
        [x],
        fp16_mode=True,
        log_level=trt.Logger.INFO,
        max_workspace_size=(1 << args.workspace),
        max_batch_size=args.batch,
    )
    torch.save(model_trt.state_dict(), os.path.join(file_name, "model_trt.pth"))
    logger.info("Converted TensorRT model done.")
    engine_file = os.path.join(file_name, "model_trt.engine")
    engine_file_demo = os.path.join("demo", "TensorRT", "cpp", "model_trt.engine")
    with open(engine_file, "wb") as f:
        f.write(model_trt.engine.serialize())

    shutil.copyfile(engine_file, engine_file_demo)

    logger.info("Converted TensorRT model engine file is saved for C++ inference.")


if __name__ == "__main__":
    main()