File size: 6,117 Bytes
a1d409e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
<!---
Copyright 2021 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->

# Audio classification examples

The following examples showcase how to fine-tune `Wav2Vec2` for audio classification using PyTorch.

Speech recognition models that have been pretrained in unsupervised fashion on audio data alone,
*e.g.* [Wav2Vec2](https://huggingface.co/transformers/main/model_doc/wav2vec2.html),
[HuBERT](https://huggingface.co/transformers/main/model_doc/hubert.html),
[XLSR-Wav2Vec2](https://huggingface.co/transformers/main/model_doc/xlsr_wav2vec2.html), have shown to require only
very little annotated data to yield good performance on speech classification datasets.

## Single-GPU

The following command shows how to fine-tune [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the πŸ—£οΈ [Keyword Spotting subset](https://huggingface.co/datasets/superb#ks) of the SUPERB dataset.

```bash
python run_audio_classification.py \
    --model_name_or_path facebook/wav2vec2-base \
    --dataset_name superb \
    --dataset_config_name ks \
    --output_dir wav2vec2-base-ft-keyword-spotting \
    --overwrite_output_dir \
    --remove_unused_columns False \
    --do_train \
    --do_eval \
    --fp16 \
    --learning_rate 3e-5 \
    --max_length_seconds 1 \
    --attention_mask False \
    --warmup_ratio 0.1 \
    --num_train_epochs 5 \
    --per_device_train_batch_size 32 \
    --gradient_accumulation_steps 4 \
    --per_device_eval_batch_size 32 \
    --dataloader_num_workers 4 \
    --logging_strategy steps \
    --logging_steps 10 \
    --evaluation_strategy epoch \
    --save_strategy epoch \
    --load_best_model_at_end True \
    --metric_for_best_model accuracy \
    --save_total_limit 3 \
    --seed 0 \
    --push_to_hub
```

On a single V100 GPU (16GB), this script should run in ~14 minutes and yield accuracy of **98.26%**.

πŸ‘€ See the results here: [anton-l/wav2vec2-base-ft-keyword-spotting](https://huggingface.co/anton-l/wav2vec2-base-ft-keyword-spotting)

> If your model classification head dimensions do not fit the number of labels in the dataset, you can specify `--ignore_mismatched_sizes` to adapt it.

## Multi-GPU

The following command shows how to fine-tune [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) for 🌎 **Language Identification** on the [CommonLanguage dataset](https://huggingface.co/datasets/anton-l/common_language).

```bash
python run_audio_classification.py \
    --model_name_or_path facebook/wav2vec2-base \
    --dataset_name common_language \
    --audio_column_name audio \
    --label_column_name language \
    --output_dir wav2vec2-base-lang-id \
    --overwrite_output_dir \
    --remove_unused_columns False \
    --do_train \
    --do_eval \
    --fp16 \
    --learning_rate 3e-4 \
    --max_length_seconds 16 \
    --attention_mask False \
    --warmup_ratio 0.1 \
    --num_train_epochs 10 \
    --per_device_train_batch_size 8 \
    --gradient_accumulation_steps 4 \
    --per_device_eval_batch_size 1 \
    --dataloader_num_workers 8 \
    --logging_strategy steps \
    --logging_steps 10 \
    --evaluation_strategy epoch \
    --save_strategy epoch \
    --load_best_model_at_end True \
    --metric_for_best_model accuracy \
    --save_total_limit 3 \
    --seed 0 \
    --push_to_hub
```

On 4 V100 GPUs (16GB), this script should run in ~1 hour and yield accuracy of **79.45%**.

πŸ‘€ See the results here: [anton-l/wav2vec2-base-lang-id](https://huggingface.co/anton-l/wav2vec2-base-lang-id)

## Sharing your model on πŸ€— Hub

0. If you haven't already, [sign up](https://huggingface.co/join) for a πŸ€— account

1. Make sure you have `git-lfs` installed and git set up.

```bash
$ apt install git-lfs
```

2. Log in with your HuggingFace account credentials using `huggingface-cli`

```bash
$ huggingface-cli login
# ...follow the prompts
```

3. When running the script, pass the following arguments:

```bash
python run_audio_classification.py \
    --push_to_hub \
    --hub_model_id <username/model_id> \
    ...
```

### Examples

The following table shows a couple of demonstration fine-tuning runs.
It has been verified that the script works for the following datasets:

- [SUPERB Keyword Spotting](https://huggingface.co/datasets/superb#ks)
- [Common Language](https://huggingface.co/datasets/common_language)

| Dataset | Pretrained Model | # transformer layers | Accuracy on eval | GPU setup | Training time | Fine-tuned Model & Logs |
|---------|------------------|----------------------|------------------|-----------|---------------|--------------------------|
| Keyword Spotting | [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) | 2 | 0.9706 | 1 V100 GPU | 11min  | [here](https://huggingface.co/anton-l/distilhubert-ft-keyword-spotting) |
| Keyword Spotting | [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) | 12 | 0.9826 | 1 V100 GPU | 14min  | [here](https://huggingface.co/anton-l/wav2vec2-base-ft-keyword-spotting) |
| Keyword Spotting | [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) | 12 | 0.9819 | 1 V100 GPU | 14min  | [here](https://huggingface.co/anton-l/hubert-base-ft-keyword-spotting) |
| Keyword Spotting | [asapp/sew-mid-100k](https://huggingface.co/asapp/sew-mid-100k) | 24 | 0.9757 | 1 V100 GPU | 15min  | [here](https://huggingface.co/anton-l/sew-mid-100k-ft-keyword-spotting) |
| Common Language | [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) | 12 | 0.7945 | 4 V100 GPUs | 1h10m  | [here](https://huggingface.co/anton-l/wav2vec2-base-lang-id) |