Spaces:
Runtime error
Runtime error
File size: 27,952 Bytes
a1d409e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Saving PruneBERT\n",
"\n",
"\n",
"This notebook aims at showcasing how we can leverage standard tools to save (and load) an extremely sparse model fine-pruned with [movement pruning](https://arxiv.org/abs/2005.07683) (or any other unstructured pruning mehtod).\n",
"\n",
"In this example, we used BERT (base-uncased, but the procedure described here is not specific to BERT and can be applied to a large variety of models.\n",
"\n",
"We first obtain an extremely sparse model by fine-pruning with movement pruning on SQuAD v1.1. We then used the following combination of standard tools:\n",
"- We reduce the precision of the model with Int8 dynamic quantization using [PyTorch implementation](https://pytorch.org/tutorials/intermediate/dynamic_quantization_bert_tutorial.html). We only quantized the Fully Connected Layers.\n",
"- Sparse quantized matrices are converted into the [Compressed Sparse Row format](https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html).\n",
"- We use HDF5 with `gzip` compression to store the weights.\n",
"\n",
"We experiment with a question answering model with only 6% of total remaining weights in the encoder (previously obtained with movement pruning). **We are able to reduce the memory size of the encoder from 340MB (original dense BERT) to 11MB**, which fits on a [91' floppy disk](https://en.wikipedia.org/wiki/Floptical)!\n",
"\n",
"<img src=\"https://upload.wikimedia.org/wikipedia/commons/thumb/0/00/Floptical_disk_21MB.jpg/440px-Floptical_disk_21MB.jpg\" width=\"200\">\n",
"\n",
"*Note: this notebook is compatible with `torch>=1.5.0` If you are using, `torch==1.4.0`, please refer to [this previous version of the notebook](https://github.com/huggingface/transformers/commit/b11386e158e86e62d4041eabd86d044cd1695737).*"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Includes\n",
"\n",
"import h5py\n",
"import os\n",
"import json\n",
"from collections import OrderedDict\n",
"\n",
"from scipy import sparse\n",
"import numpy as np\n",
"\n",
"import torch\n",
"from torch import nn\n",
"\n",
"from transformers import *\n",
"\n",
"os.chdir(\"../../\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Saving"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Dynamic quantization induces little or no loss of performance while significantly reducing the memory footprint."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# Load fine-pruned model and quantize the model\n",
"\n",
"model = BertForQuestionAnswering.from_pretrained(\"huggingface/prunebert-base-uncased-6-finepruned-w-distil-squad\")\n",
"model.to(\"cpu\")\n",
"\n",
"quantized_model = torch.quantization.quantize_dynamic(\n",
" model=model,\n",
" qconfig_spec={\n",
" nn.Linear: torch.quantization.default_dynamic_qconfig,\n",
" },\n",
" dtype=torch.qint8,\n",
")\n",
"# print(quantized_model)\n",
"\n",
"qtz_st = quantized_model.state_dict()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# Saving the original (encoder + classifier) in the standard torch.save format\n",
"\n",
"dense_st = {\n",
" name: param for name, param in model.state_dict().items() if \"embedding\" not in name and \"pooler\" not in name\n",
"}\n",
"torch.save(\n",
" dense_st,\n",
" \"dbg/dense_squad.pt\",\n",
")\n",
"dense_mb_size = os.path.getsize(\"dbg/dense_squad.pt\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Decompose quantization for bert.encoder.layer.0.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.0.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.0.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.0.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.0.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.0.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.1.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.1.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.1.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.1.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.1.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.1.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.2.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.2.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.2.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.2.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.2.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.2.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.3.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.3.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.3.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.3.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.3.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.3.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.4.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.4.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.4.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.4.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.4.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.4.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.5.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.5.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.5.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.5.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.5.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.5.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.6.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.6.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.6.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.6.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.6.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.6.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.7.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.7.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.7.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.7.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.7.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.7.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.8.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.8.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.8.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.8.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.8.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.8.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.9.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.9.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.9.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.9.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.9.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.9.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.10.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.10.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.10.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.10.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.10.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.10.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.11.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.11.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.11.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.11.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.11.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.11.output.dense._packed_params.weight\n",
"Decompose quantization for bert.pooler.dense._packed_params.weight\n",
"Decompose quantization for qa_outputs._packed_params.weight\n"
]
}
],
"source": [
"# Elementary representation: we decompose the quantized tensors into (scale, zero_point, int_repr).\n",
"# See https://pytorch.org/docs/stable/quantization.html\n",
"\n",
"# We further leverage the fact that int_repr is sparse matrix to optimize the storage: we decompose int_repr into\n",
"# its CSR representation (data, indptr, indices).\n",
"\n",
"elementary_qtz_st = {}\n",
"for name, param in qtz_st.items():\n",
" if \"dtype\" not in name and param.is_quantized:\n",
" print(\"Decompose quantization for\", name)\n",
" # We need to extract the scale, the zero_point and the int_repr for the quantized tensor and modules\n",
" scale = param.q_scale() # torch.tensor(1,) - float32\n",
" zero_point = param.q_zero_point() # torch.tensor(1,) - int32\n",
" elementary_qtz_st[f\"{name}.scale\"] = scale\n",
" elementary_qtz_st[f\"{name}.zero_point\"] = zero_point\n",
"\n",
" # We assume the int_repr is sparse and compute its CSR representation\n",
" # Only the FCs in the encoder are actually sparse\n",
" int_repr = param.int_repr() # torch.tensor(nb_rows, nb_columns) - int8\n",
" int_repr_cs = sparse.csr_matrix(int_repr) # scipy.sparse.csr.csr_matrix\n",
"\n",
" elementary_qtz_st[f\"{name}.int_repr.data\"] = int_repr_cs.data # np.array int8\n",
" elementary_qtz_st[f\"{name}.int_repr.indptr\"] = int_repr_cs.indptr # np.array int32\n",
" assert max(int_repr_cs.indices) < 65535 # If not, we shall fall back to int32\n",
" elementary_qtz_st[f\"{name}.int_repr.indices\"] = np.uint16(int_repr_cs.indices) # np.array uint16\n",
" elementary_qtz_st[f\"{name}.int_repr.shape\"] = int_repr_cs.shape # tuple(int, int)\n",
" else:\n",
" elementary_qtz_st[name] = param"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# Create mapping from torch.dtype to string description (we could also used an int8 instead of string)\n",
"str_2_dtype = {\"qint8\": torch.qint8}\n",
"dtype_2_str = {torch.qint8: \"qint8\"}"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Encoder Size (MB) - Sparse & Quantized - `torch.save`: 21.29\n"
]
}
],
"source": [
"# Saving the pruned (encoder + classifier) in the standard torch.save format\n",
"\n",
"dense_optimized_st = {\n",
" name: param for name, param in elementary_qtz_st.items() if \"embedding\" not in name and \"pooler\" not in name\n",
"}\n",
"torch.save(\n",
" dense_optimized_st,\n",
" \"dbg/dense_squad_optimized.pt\",\n",
")\n",
"print(\n",
" \"Encoder Size (MB) - Sparse & Quantized - `torch.save`:\",\n",
" round(os.path.getsize(\"dbg/dense_squad_optimized.pt\") / 1e6, 2),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Skip bert.embeddings.word_embeddings.weight\n",
"Skip bert.embeddings.position_embeddings.weight\n",
"Skip bert.embeddings.token_type_embeddings.weight\n",
"Skip bert.embeddings.LayerNorm.weight\n",
"Skip bert.embeddings.LayerNorm.bias\n",
"Skip bert.pooler.dense.scale\n",
"Skip bert.pooler.dense.zero_point\n",
"Skip bert.pooler.dense._packed_params.weight.scale\n",
"Skip bert.pooler.dense._packed_params.weight.zero_point\n",
"Skip bert.pooler.dense._packed_params.weight.int_repr.data\n",
"Skip bert.pooler.dense._packed_params.weight.int_repr.indptr\n",
"Skip bert.pooler.dense._packed_params.weight.int_repr.indices\n",
"Skip bert.pooler.dense._packed_params.weight.int_repr.shape\n",
"Skip bert.pooler.dense._packed_params.bias\n",
"Skip bert.pooler.dense._packed_params.dtype\n",
"\n",
"Encoder Size (MB) - Dense: 340.26\n",
"Encoder Size (MB) - Sparse & Quantized: 11.28\n"
]
}
],
"source": [
"# Save the decomposed state_dict with an HDF5 file\n",
"# Saving only the encoder + QA Head\n",
"\n",
"with h5py.File(\"dbg/squad_sparse.h5\", \"w\") as hf:\n",
" for name, param in elementary_qtz_st.items():\n",
" if \"embedding\" in name:\n",
" print(f\"Skip {name}\")\n",
" continue\n",
"\n",
" if \"pooler\" in name:\n",
" print(f\"Skip {name}\")\n",
" continue\n",
"\n",
" if type(param) == torch.Tensor:\n",
" if param.numel() == 1:\n",
" # module scale\n",
" # module zero_point\n",
" hf.attrs[name] = param\n",
" continue\n",
"\n",
" if param.requires_grad:\n",
" # LayerNorm\n",
" param = param.detach().numpy()\n",
" hf.create_dataset(name, data=param, compression=\"gzip\", compression_opts=9)\n",
"\n",
" elif type(param) == float or type(param) == int or type(param) == tuple:\n",
" # float - tensor _packed_params.weight.scale\n",
" # int - tensor _packed_params.weight.zero_point\n",
" # tuple - tensor _packed_params.weight.shape\n",
" hf.attrs[name] = param\n",
"\n",
" elif type(param) == torch.dtype:\n",
" # dtype - tensor _packed_params.dtype\n",
" hf.attrs[name] = dtype_2_str[param]\n",
"\n",
" else:\n",
" hf.create_dataset(name, data=param, compression=\"gzip\", compression_opts=9)\n",
"\n",
"\n",
"with open(\"dbg/metadata.json\", \"w\") as f:\n",
" f.write(json.dumps(qtz_st._metadata))\n",
"\n",
"size = os.path.getsize(\"dbg/squad_sparse.h5\") + os.path.getsize(\"dbg/metadata.json\")\n",
"print(\"\")\n",
"print(\"Encoder Size (MB) - Dense: \", round(dense_mb_size / 1e6, 2))\n",
"print(\"Encoder Size (MB) - Sparse & Quantized:\", round(size / 1e6, 2))"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Size (MB): 99.41\n"
]
}
],
"source": [
"# Save the decomposed state_dict to HDF5 storage\n",
"# Save everything in the architecutre (embedding + encoder + QA Head)\n",
"\n",
"with h5py.File(\"dbg/squad_sparse_with_embs.h5\", \"w\") as hf:\n",
" for name, param in elementary_qtz_st.items():\n",
" # if \"embedding\" in name:\n",
" # print(f\"Skip {name}\")\n",
" # continue\n",
"\n",
" # if \"pooler\" in name:\n",
" # print(f\"Skip {name}\")\n",
" # continue\n",
"\n",
" if type(param) == torch.Tensor:\n",
" if param.numel() == 1:\n",
" # module scale\n",
" # module zero_point\n",
" hf.attrs[name] = param\n",
" continue\n",
"\n",
" if param.requires_grad:\n",
" # LayerNorm\n",
" param = param.detach().numpy()\n",
" hf.create_dataset(name, data=param, compression=\"gzip\", compression_opts=9)\n",
"\n",
" elif type(param) == float or type(param) == int or type(param) == tuple:\n",
" # float - tensor _packed_params.weight.scale\n",
" # int - tensor _packed_params.weight.zero_point\n",
" # tuple - tensor _packed_params.weight.shape\n",
" hf.attrs[name] = param\n",
"\n",
" elif type(param) == torch.dtype:\n",
" # dtype - tensor _packed_params.dtype\n",
" hf.attrs[name] = dtype_2_str[param]\n",
"\n",
" else:\n",
" hf.create_dataset(name, data=param, compression=\"gzip\", compression_opts=9)\n",
"\n",
"\n",
"with open(\"dbg/metadata.json\", \"w\") as f:\n",
" f.write(json.dumps(qtz_st._metadata))\n",
"\n",
"size = os.path.getsize(\"dbg/squad_sparse_with_embs.h5\") + os.path.getsize(\"dbg/metadata.json\")\n",
"print(\"\\nSize (MB):\", round(size / 1e6, 2))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Loading"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"# Reconstruct the elementary state dict\n",
"\n",
"reconstructed_elementary_qtz_st = {}\n",
"\n",
"hf = h5py.File(\"dbg/squad_sparse_with_embs.h5\", \"r\")\n",
"\n",
"for attr_name, attr_param in hf.attrs.items():\n",
" if \"shape\" in attr_name:\n",
" attr_param = tuple(attr_param)\n",
" elif \".scale\" in attr_name:\n",
" if \"_packed_params\" in attr_name:\n",
" attr_param = float(attr_param)\n",
" else:\n",
" attr_param = torch.tensor(attr_param)\n",
" elif \".zero_point\" in attr_name:\n",
" if \"_packed_params\" in attr_name:\n",
" attr_param = int(attr_param)\n",
" else:\n",
" attr_param = torch.tensor(attr_param)\n",
" elif \".dtype\" in attr_name:\n",
" attr_param = str_2_dtype[attr_param]\n",
" reconstructed_elementary_qtz_st[attr_name] = attr_param\n",
" # print(f\"Unpack {attr_name}\")\n",
"\n",
"# Get the tensors/arrays\n",
"for data_name, data_param in hf.items():\n",
" if \"LayerNorm\" in data_name or \"_packed_params.bias\" in data_name:\n",
" reconstructed_elementary_qtz_st[data_name] = torch.from_numpy(np.array(data_param))\n",
" elif \"embedding\" in data_name:\n",
" reconstructed_elementary_qtz_st[data_name] = torch.from_numpy(np.array(data_param))\n",
" else: # _packed_params.weight.int_repr.data, _packed_params.weight.int_repr.indices and _packed_params.weight.int_repr.indptr\n",
" data_param = np.array(data_param)\n",
" if \"indices\" in data_name:\n",
" data_param = np.array(data_param, dtype=np.int32)\n",
" reconstructed_elementary_qtz_st[data_name] = data_param\n",
" # print(f\"Unpack {data_name}\")\n",
"\n",
"\n",
"hf.close()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# Sanity checks\n",
"\n",
"for name, param in reconstructed_elementary_qtz_st.items():\n",
" assert name in elementary_qtz_st\n",
"for name, param in elementary_qtz_st.items():\n",
" assert name in reconstructed_elementary_qtz_st, name\n",
"\n",
"for name, param in reconstructed_elementary_qtz_st.items():\n",
" assert type(param) == type(elementary_qtz_st[name]), name\n",
" if type(param) == torch.Tensor:\n",
" assert torch.all(torch.eq(param, elementary_qtz_st[name])), name\n",
" elif type(param) == np.ndarray:\n",
" assert (param == elementary_qtz_st[name]).all(), name\n",
" else:\n",
" assert param == elementary_qtz_st[name], name"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# Re-assemble the sparse int_repr from the CSR format\n",
"\n",
"reconstructed_qtz_st = {}\n",
"\n",
"for name, param in reconstructed_elementary_qtz_st.items():\n",
" if \"weight.int_repr.indptr\" in name:\n",
" prefix_ = name[:-16]\n",
" data = reconstructed_elementary_qtz_st[f\"{prefix_}.int_repr.data\"]\n",
" indptr = reconstructed_elementary_qtz_st[f\"{prefix_}.int_repr.indptr\"]\n",
" indices = reconstructed_elementary_qtz_st[f\"{prefix_}.int_repr.indices\"]\n",
" shape = reconstructed_elementary_qtz_st[f\"{prefix_}.int_repr.shape\"]\n",
"\n",
" int_repr = sparse.csr_matrix(arg1=(data, indices, indptr), shape=shape)\n",
" int_repr = torch.tensor(int_repr.todense())\n",
"\n",
" scale = reconstructed_elementary_qtz_st[f\"{prefix_}.scale\"]\n",
" zero_point = reconstructed_elementary_qtz_st[f\"{prefix_}.zero_point\"]\n",
" weight = torch._make_per_tensor_quantized_tensor(int_repr, scale, zero_point)\n",
"\n",
" reconstructed_qtz_st[f\"{prefix_}\"] = weight\n",
" elif (\n",
" \"int_repr.data\" in name\n",
" or \"int_repr.shape\" in name\n",
" or \"int_repr.indices\" in name\n",
" or \"weight.scale\" in name\n",
" or \"weight.zero_point\" in name\n",
" ):\n",
" continue\n",
" else:\n",
" reconstructed_qtz_st[name] = param"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"# Sanity checks\n",
"\n",
"for name, param in reconstructed_qtz_st.items():\n",
" assert name in qtz_st\n",
"for name, param in qtz_st.items():\n",
" assert name in reconstructed_qtz_st, name\n",
"\n",
"for name, param in reconstructed_qtz_st.items():\n",
" assert type(param) == type(qtz_st[name]), name\n",
" if type(param) == torch.Tensor:\n",
" assert torch.all(torch.eq(param, qtz_st[name])), name\n",
" elif type(param) == np.ndarray:\n",
" assert (param == qtz_st[name]).all(), name\n",
" else:\n",
" assert param == qtz_st[name], name"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Sanity checks"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<All keys matched successfully>"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Load the re-constructed state dict into a model\n",
"\n",
"dummy_model = BertForQuestionAnswering.from_pretrained(\"bert-base-uncased\")\n",
"dummy_model.to(\"cpu\")\n",
"\n",
"reconstructed_qtz_model = torch.quantization.quantize_dynamic(\n",
" model=dummy_model,\n",
" qconfig_spec=None,\n",
" dtype=torch.qint8,\n",
")\n",
"\n",
"reconstructed_qtz_st = OrderedDict(reconstructed_qtz_st)\n",
"with open(\"dbg/metadata.json\", \"r\") as read_file:\n",
" metadata = json.loads(read_file.read())\n",
"reconstructed_qtz_st._metadata = metadata\n",
"\n",
"reconstructed_qtz_model.load_state_dict(reconstructed_qtz_st)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sanity check passed\n"
]
}
],
"source": [
"# Sanity checks on the infernce\n",
"\n",
"N = 32\n",
"\n",
"for _ in range(25):\n",
" inputs = torch.randint(low=0, high=30000, size=(N, 128))\n",
" mask = torch.ones(size=(N, 128))\n",
"\n",
" y_reconstructed = reconstructed_qtz_model(input_ids=inputs, attention_mask=mask)[0]\n",
" y = quantized_model(input_ids=inputs, attention_mask=mask)[0]\n",
"\n",
" assert torch.all(torch.eq(y, y_reconstructed))\n",
"print(\"Sanity check passed\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|