File size: 15,103 Bytes
a1d409e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Dinat model. """

import collections
import inspect
import unittest

from transformers import DinatConfig
from transformers.testing_utils import require_natten, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available

from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch
    from torch import nn

    from transformers import DinatBackbone, DinatForImageClassification, DinatModel
    from transformers.models.dinat.modeling_dinat import DINAT_PRETRAINED_MODEL_ARCHIVE_LIST

if is_vision_available():
    from PIL import Image

    from transformers import AutoImageProcessor


class DinatModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=64,
        patch_size=4,
        num_channels=3,
        embed_dim=16,
        depths=[1, 2, 1],
        num_heads=[2, 4, 8],
        kernel_size=3,
        dilations=[[3], [1, 2], [1]],
        mlp_ratio=2.0,
        qkv_bias=True,
        hidden_dropout_prob=0.0,
        attention_probs_dropout_prob=0.0,
        drop_path_rate=0.1,
        hidden_act="gelu",
        patch_norm=True,
        initializer_range=0.02,
        layer_norm_eps=1e-5,
        is_training=True,
        scope=None,
        use_labels=True,
        num_labels=10,
        out_features=["stage1", "stage2"],
        out_indices=[1, 2],
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.embed_dim = embed_dim
        self.depths = depths
        self.num_heads = num_heads
        self.kernel_size = kernel_size
        self.dilations = dilations
        self.mlp_ratio = mlp_ratio
        self.qkv_bias = qkv_bias
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.drop_path_rate = drop_path_rate
        self.hidden_act = hidden_act
        self.patch_norm = patch_norm
        self.layer_norm_eps = layer_norm_eps
        self.initializer_range = initializer_range
        self.is_training = is_training
        self.scope = scope
        self.use_labels = use_labels
        self.num_labels = num_labels
        self.out_features = out_features
        self.out_indices = out_indices

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.num_labels)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return DinatConfig(
            num_labels=self.num_labels,
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            embed_dim=self.embed_dim,
            depths=self.depths,
            num_heads=self.num_heads,
            kernel_size=self.kernel_size,
            dilations=self.dilations,
            mlp_ratio=self.mlp_ratio,
            qkv_bias=self.qkv_bias,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            drop_path_rate=self.drop_path_rate,
            hidden_act=self.hidden_act,
            patch_norm=self.patch_norm,
            layer_norm_eps=self.layer_norm_eps,
            initializer_range=self.initializer_range,
            out_features=self.out_features,
            out_indices=self.out_indices,
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = DinatModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        expected_height = expected_width = (config.image_size // config.patch_size) // (2 ** (len(config.depths) - 1))
        expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1))

        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, expected_height, expected_width, expected_dim)
        )

    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        model = DinatForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

        # test greyscale images
        config.num_channels = 1
        model = DinatForImageClassification(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

    def create_and_check_backbone(self, config, pixel_values, labels):
        model = DinatBackbone(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        # verify hidden states
        self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
        self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, model.channels[0], 16, 16])

        # verify channels
        self.parent.assertEqual(len(model.channels), len(config.out_features))

        # verify backbone works with out_features=None
        config.out_features = None
        model = DinatBackbone(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        # verify feature maps
        self.parent.assertEqual(len(result.feature_maps), 1)
        self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, model.channels[-1], 4, 4])

        # verify channels
        self.parent.assertEqual(len(model.channels), 1)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_natten
@require_torch
class DinatModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
        (
            DinatModel,
            DinatForImageClassification,
            DinatBackbone,
        )
        if is_torch_available()
        else ()
    )
    pipeline_model_mapping = (
        {"feature-extraction": DinatModel, "image-classification": DinatForImageClassification}
        if is_torch_available()
        else {}
    )
    fx_compatible = False

    test_torchscript = False
    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = DinatModelTester(self)
        self.config_tester = ConfigTester(self, config_class=DinatConfig, embed_dim=37)

    def test_config(self):
        self.create_and_test_config_common_properties()
        self.config_tester.create_and_test_config_to_json_string()
        self.config_tester.create_and_test_config_to_json_file()
        self.config_tester.create_and_test_config_from_and_save_pretrained()
        self.config_tester.create_and_test_config_with_num_labels()
        self.config_tester.check_config_can_be_init_without_params()
        self.config_tester.check_config_arguments_init()

    def create_and_test_config_common_properties(self):
        return

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    def test_backbone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_backbone(*config_and_inputs)

    @unittest.skip(reason="Dinat does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="Dinat does not use feedforward chunking")
    def test_feed_forward_chunking(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_attention_outputs(self):
        self.skipTest("Dinat's attention operation is handled entirely by NATTEN.")

    def check_hidden_states_output(self, inputs_dict, config, model_class, image_size):
        model = model_class(config)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))

        hidden_states = outputs.hidden_states

        expected_num_layers = getattr(
            self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1
        )
        self.assertEqual(len(hidden_states), expected_num_layers)

        # Dinat has a different seq_length
        patch_size = (
            config.patch_size
            if isinstance(config.patch_size, collections.abc.Iterable)
            else (config.patch_size, config.patch_size)
        )

        height = image_size[0] // patch_size[0]
        width = image_size[1] // patch_size[1]

        self.assertListEqual(
            list(hidden_states[0].shape[-3:]),
            [height, width, self.model_tester.embed_dim],
        )

        if model_class.__name__ != "DinatBackbone":
            reshaped_hidden_states = outputs.reshaped_hidden_states
            self.assertEqual(len(reshaped_hidden_states), expected_num_layers)

            batch_size, num_channels, height, width = reshaped_hidden_states[0].shape
            reshaped_hidden_states = (
                reshaped_hidden_states[0].view(batch_size, num_channels, height, width).permute(0, 2, 3, 1)
            )
            self.assertListEqual(
                list(reshaped_hidden_states.shape[-3:]),
                [height, width, self.model_tester.embed_dim],
            )

    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        image_size = (
            self.model_tester.image_size
            if isinstance(self.model_tester.image_size, collections.abc.Iterable)
            else (self.model_tester.image_size, self.model_tester.image_size)
        )

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            self.check_hidden_states_output(inputs_dict, config, model_class, image_size)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            self.check_hidden_states_output(inputs_dict, config, model_class, image_size)

    @slow
    def test_model_from_pretrained(self):
        for model_name in DINAT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = DinatModel.from_pretrained(model_name)
            self.assertIsNotNone(model)

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if "embeddings" not in name and param.requires_grad:
                    self.assertIn(
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
                        [0.0, 1.0],
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )


@require_natten
@require_vision
@require_torch
class DinatModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_feature_extractor(self):
        return AutoImageProcessor.from_pretrained("shi-labs/dinat-mini-in1k-224") if is_vision_available() else None

    @slow
    def test_inference_image_classification_head(self):
        model = DinatForImageClassification.from_pretrained("shi-labs/dinat-mini-in1k-224").to(torch_device)
        feature_extractor = self.default_feature_extractor

        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)
        expected_slice = torch.tensor([-0.1545, -0.7667, 0.4642]).to(torch_device)
        self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))


@require_torch
@require_natten
class DinatBackboneTest(unittest.TestCase, BackboneTesterMixin):
    all_model_classes = (DinatBackbone,) if is_torch_available() else ()
    config_class = DinatConfig

    def setUp(self):
        self.model_tester = DinatModelTester(self)