File size: 27,697 Bytes
a1d409e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import datasets
import numpy as np
import pytest

from transformers import is_torch_available, is_vision_available
from transformers.image_utils import ChannelDimension, get_channel_dimension_axis, make_list_of_images
from transformers.testing_utils import require_torch, require_vision


if is_torch_available():
    import torch

if is_vision_available():
    import PIL.Image

    from transformers import ImageFeatureExtractionMixin
    from transformers.image_utils import get_image_size, infer_channel_dimension_format, load_image


def get_random_image(height, width):
    random_array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
    return PIL.Image.fromarray(random_array)


@require_vision
class ImageFeatureExtractionTester(unittest.TestCase):
    def test_conversion_image_to_array(self):
        feature_extractor = ImageFeatureExtractionMixin()
        image = get_random_image(16, 32)

        # Conversion with defaults (rescale + channel first)
        array1 = feature_extractor.to_numpy_array(image)
        self.assertTrue(array1.dtype, np.float32)
        self.assertEqual(array1.shape, (3, 16, 32))

        # Conversion with rescale and not channel first
        array2 = feature_extractor.to_numpy_array(image, channel_first=False)
        self.assertTrue(array2.dtype, np.float32)
        self.assertEqual(array2.shape, (16, 32, 3))
        self.assertTrue(np.array_equal(array1, array2.transpose(2, 0, 1)))

        # Conversion with no rescale and channel first
        array3 = feature_extractor.to_numpy_array(image, rescale=False)
        self.assertTrue(array3.dtype, np.uint8)
        self.assertEqual(array3.shape, (3, 16, 32))
        self.assertTrue(np.array_equal(array1, array3.astype(np.float32) * (1 / 255.0)))

        # Conversion with no rescale and not channel first
        array4 = feature_extractor.to_numpy_array(image, rescale=False, channel_first=False)
        self.assertTrue(array4.dtype, np.uint8)
        self.assertEqual(array4.shape, (16, 32, 3))
        self.assertTrue(np.array_equal(array2, array4.astype(np.float32) * (1 / 255.0)))

    def test_conversion_array_to_array(self):
        feature_extractor = ImageFeatureExtractionMixin()
        array = np.random.randint(0, 256, (16, 32, 3), dtype=np.uint8)

        # By default, rescale (for an array of ints) and channel permute
        array1 = feature_extractor.to_numpy_array(array)
        self.assertTrue(array1.dtype, np.float32)
        self.assertEqual(array1.shape, (3, 16, 32))
        self.assertTrue(np.array_equal(array1, array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0)))

        # Same with no permute
        array2 = feature_extractor.to_numpy_array(array, channel_first=False)
        self.assertTrue(array2.dtype, np.float32)
        self.assertEqual(array2.shape, (16, 32, 3))
        self.assertTrue(np.array_equal(array2, array.astype(np.float32) * (1 / 255.0)))

        # Force rescale to False
        array3 = feature_extractor.to_numpy_array(array, rescale=False)
        self.assertTrue(array3.dtype, np.uint8)
        self.assertEqual(array3.shape, (3, 16, 32))
        self.assertTrue(np.array_equal(array3, array.transpose(2, 0, 1)))

        # Force rescale to False and no channel permute
        array4 = feature_extractor.to_numpy_array(array, rescale=False, channel_first=False)
        self.assertTrue(array4.dtype, np.uint8)
        self.assertEqual(array4.shape, (16, 32, 3))
        self.assertTrue(np.array_equal(array4, array))

        # Now test the default rescale for a float array (defaults to False)
        array5 = feature_extractor.to_numpy_array(array2)
        self.assertTrue(array5.dtype, np.float32)
        self.assertEqual(array5.shape, (3, 16, 32))
        self.assertTrue(np.array_equal(array5, array1))

    def test_make_list_of_images_numpy(self):
        # Test a single image is converted to a list of 1 image
        images = np.random.randint(0, 256, (16, 32, 3))
        images_list = make_list_of_images(images)
        self.assertEqual(len(images_list), 1)
        self.assertTrue(np.array_equal(images_list[0], images))
        self.assertIsInstance(images_list, list)

        # Test a batch of images is converted to a list of images
        images = np.random.randint(0, 256, (4, 16, 32, 3))
        images_list = make_list_of_images(images)
        self.assertEqual(len(images_list), 4)
        self.assertTrue(np.array_equal(images_list[0], images[0]))
        self.assertIsInstance(images_list, list)

        # Test a list of images is not modified
        images = [np.random.randint(0, 256, (16, 32, 3)) for _ in range(4)]
        images_list = make_list_of_images(images)
        self.assertEqual(len(images_list), 4)
        self.assertTrue(np.array_equal(images_list[0], images[0]))
        self.assertIsInstance(images_list, list)

        # Test batched masks with no channel dimension are converted to a list of masks
        masks = np.random.randint(0, 2, (4, 16, 32))
        masks_list = make_list_of_images(masks, expected_ndims=2)
        self.assertEqual(len(masks_list), 4)
        self.assertTrue(np.array_equal(masks_list[0], masks[0]))
        self.assertIsInstance(masks_list, list)

    @require_torch
    def test_make_list_of_images_torch(self):
        # Test a single image is converted to a list of 1 image
        images = torch.randint(0, 256, (16, 32, 3))
        images_list = make_list_of_images(images)
        self.assertEqual(len(images_list), 1)
        self.assertTrue(np.array_equal(images_list[0], images))
        self.assertIsInstance(images_list, list)

        # Test a batch of images is converted to a list of images
        images = torch.randint(0, 256, (4, 16, 32, 3))
        images_list = make_list_of_images(images)
        self.assertEqual(len(images_list), 4)
        self.assertTrue(np.array_equal(images_list[0], images[0]))
        self.assertIsInstance(images_list, list)

        # Test a list of images is left unchanged
        images = [torch.randint(0, 256, (16, 32, 3)) for _ in range(4)]
        images_list = make_list_of_images(images)
        self.assertEqual(len(images_list), 4)
        self.assertTrue(np.array_equal(images_list[0], images[0]))
        self.assertIsInstance(images_list, list)

    @require_torch
    def test_conversion_torch_to_array(self):
        feature_extractor = ImageFeatureExtractionMixin()
        tensor = torch.randint(0, 256, (16, 32, 3))
        array = tensor.numpy()

        # By default, rescale (for a tensor of ints) and channel permute
        array1 = feature_extractor.to_numpy_array(array)
        self.assertTrue(array1.dtype, np.float32)
        self.assertEqual(array1.shape, (3, 16, 32))
        self.assertTrue(np.array_equal(array1, array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0)))

        # Same with no permute
        array2 = feature_extractor.to_numpy_array(array, channel_first=False)
        self.assertTrue(array2.dtype, np.float32)
        self.assertEqual(array2.shape, (16, 32, 3))
        self.assertTrue(np.array_equal(array2, array.astype(np.float32) * (1 / 255.0)))

        # Force rescale to False
        array3 = feature_extractor.to_numpy_array(array, rescale=False)
        self.assertTrue(array3.dtype, np.uint8)
        self.assertEqual(array3.shape, (3, 16, 32))
        self.assertTrue(np.array_equal(array3, array.transpose(2, 0, 1)))

        # Force rescale to False and no channel permute
        array4 = feature_extractor.to_numpy_array(array, rescale=False, channel_first=False)
        self.assertTrue(array4.dtype, np.uint8)
        self.assertEqual(array4.shape, (16, 32, 3))
        self.assertTrue(np.array_equal(array4, array))

        # Now test the default rescale for a float tensor (defaults to False)
        array5 = feature_extractor.to_numpy_array(array2)
        self.assertTrue(array5.dtype, np.float32)
        self.assertEqual(array5.shape, (3, 16, 32))
        self.assertTrue(np.array_equal(array5, array1))

    def test_conversion_image_to_image(self):
        feature_extractor = ImageFeatureExtractionMixin()
        image = get_random_image(16, 32)

        # On an image, `to_pil_image1` is a noop.
        image1 = feature_extractor.to_pil_image(image)
        self.assertTrue(isinstance(image, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image), np.array(image1)))

    def test_conversion_array_to_image(self):
        feature_extractor = ImageFeatureExtractionMixin()
        array = np.random.randint(0, 256, (16, 32, 3), dtype=np.uint8)

        # By default, no rescale (for an array of ints)
        image1 = feature_extractor.to_pil_image(array)
        self.assertTrue(isinstance(image1, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image1), array))

        # If the array is channel-first, proper reordering of the channels is done.
        image2 = feature_extractor.to_pil_image(array.transpose(2, 0, 1))
        self.assertTrue(isinstance(image2, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image2), array))

        # If the array has floating type, it's rescaled by default.
        image3 = feature_extractor.to_pil_image(array.astype(np.float32) * (1 / 255.0))
        self.assertTrue(isinstance(image3, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image3), array))

        # You can override the default to rescale.
        image4 = feature_extractor.to_pil_image(array.astype(np.float32), rescale=False)
        self.assertTrue(isinstance(image4, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image4), array))

        # And with floats + channel first.
        image5 = feature_extractor.to_pil_image(array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0))
        self.assertTrue(isinstance(image5, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image5), array))

    @require_torch
    def test_conversion_tensor_to_image(self):
        feature_extractor = ImageFeatureExtractionMixin()
        tensor = torch.randint(0, 256, (16, 32, 3))
        array = tensor.numpy()

        # By default, no rescale (for a tensor of ints)
        image1 = feature_extractor.to_pil_image(tensor)
        self.assertTrue(isinstance(image1, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image1), array))

        # If the tensor is channel-first, proper reordering of the channels is done.
        image2 = feature_extractor.to_pil_image(tensor.permute(2, 0, 1))
        self.assertTrue(isinstance(image2, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image2), array))

        # If the tensor has floating type, it's rescaled by default.
        image3 = feature_extractor.to_pil_image(tensor.float() / 255.0)
        self.assertTrue(isinstance(image3, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image3), array))

        # You can override the default to rescale.
        image4 = feature_extractor.to_pil_image(tensor.float(), rescale=False)
        self.assertTrue(isinstance(image4, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image4), array))

        # And with floats + channel first.
        image5 = feature_extractor.to_pil_image(tensor.permute(2, 0, 1).float() * (1 / 255.0))
        self.assertTrue(isinstance(image5, PIL.Image.Image))
        self.assertTrue(np.array_equal(np.array(image5), array))

    def test_resize_image_and_array(self):
        feature_extractor = ImageFeatureExtractionMixin()
        image = get_random_image(16, 32)
        array = np.array(image)

        # Size can be an int or a tuple of ints.
        resized_image = feature_extractor.resize(image, 8)
        self.assertTrue(isinstance(resized_image, PIL.Image.Image))
        self.assertEqual(resized_image.size, (8, 8))

        resized_image1 = feature_extractor.resize(image, (8, 16))
        self.assertTrue(isinstance(resized_image1, PIL.Image.Image))
        self.assertEqual(resized_image1.size, (8, 16))

        # Passing an array converts it to a PIL Image.
        resized_image2 = feature_extractor.resize(array, 8)
        self.assertTrue(isinstance(resized_image2, PIL.Image.Image))
        self.assertEqual(resized_image2.size, (8, 8))
        self.assertTrue(np.array_equal(np.array(resized_image), np.array(resized_image2)))

        resized_image3 = feature_extractor.resize(image, (8, 16))
        self.assertTrue(isinstance(resized_image3, PIL.Image.Image))
        self.assertEqual(resized_image3.size, (8, 16))
        self.assertTrue(np.array_equal(np.array(resized_image1), np.array(resized_image3)))

    def test_resize_image_and_array_non_default_to_square(self):
        feature_extractor = ImageFeatureExtractionMixin()

        heights_widths = [
            # height, width
            # square image
            (28, 28),
            (27, 27),
            # rectangular image: h < w
            (28, 34),
            (29, 35),
            # rectangular image: h > w
            (34, 28),
            (35, 29),
        ]

        # single integer or single integer in tuple/list
        sizes = [22, 27, 28, 36, [22], (27,)]

        for (height, width), size in zip(heights_widths, sizes):
            for max_size in (None, 37, 1000):
                image = get_random_image(height, width)
                array = np.array(image)

                size = size[0] if isinstance(size, (list, tuple)) else size
                # Size can be an int or a tuple of ints.
                # If size is an int, smaller edge of the image will be matched to this number.
                # i.e, if height > width, then image will be rescaled to (size * height / width, size).
                if height < width:
                    exp_w, exp_h = (int(size * width / height), size)
                    if max_size is not None and max_size < exp_w:
                        exp_w, exp_h = max_size, int(max_size * exp_h / exp_w)
                elif width < height:
                    exp_w, exp_h = (size, int(size * height / width))
                    if max_size is not None and max_size < exp_h:
                        exp_w, exp_h = int(max_size * exp_w / exp_h), max_size
                else:
                    exp_w, exp_h = (size, size)
                    if max_size is not None and max_size < size:
                        exp_w, exp_h = max_size, max_size

                resized_image = feature_extractor.resize(image, size=size, default_to_square=False, max_size=max_size)
                self.assertTrue(isinstance(resized_image, PIL.Image.Image))
                self.assertEqual(resized_image.size, (exp_w, exp_h))

                # Passing an array converts it to a PIL Image.
                resized_image2 = feature_extractor.resize(array, size=size, default_to_square=False, max_size=max_size)
                self.assertTrue(isinstance(resized_image2, PIL.Image.Image))
                self.assertEqual(resized_image2.size, (exp_w, exp_h))
                self.assertTrue(np.array_equal(np.array(resized_image), np.array(resized_image2)))

    @require_torch
    def test_resize_tensor(self):
        feature_extractor = ImageFeatureExtractionMixin()
        tensor = torch.randint(0, 256, (16, 32, 3))
        array = tensor.numpy()

        # Size can be an int or a tuple of ints.
        resized_image = feature_extractor.resize(tensor, 8)
        self.assertTrue(isinstance(resized_image, PIL.Image.Image))
        self.assertEqual(resized_image.size, (8, 8))

        resized_image1 = feature_extractor.resize(tensor, (8, 16))
        self.assertTrue(isinstance(resized_image1, PIL.Image.Image))
        self.assertEqual(resized_image1.size, (8, 16))

        # Check we get the same results as with NumPy arrays.
        resized_image2 = feature_extractor.resize(array, 8)
        self.assertTrue(np.array_equal(np.array(resized_image), np.array(resized_image2)))

        resized_image3 = feature_extractor.resize(array, (8, 16))
        self.assertTrue(np.array_equal(np.array(resized_image1), np.array(resized_image3)))

    def test_normalize_image(self):
        feature_extractor = ImageFeatureExtractionMixin()
        image = get_random_image(16, 32)
        array = np.array(image)
        mean = [0.1, 0.5, 0.9]
        std = [0.2, 0.4, 0.6]

        # PIL Image are converted to NumPy arrays for the normalization
        normalized_image = feature_extractor.normalize(image, mean, std)
        self.assertTrue(isinstance(normalized_image, np.ndarray))
        self.assertEqual(normalized_image.shape, (3, 16, 32))

        # During the conversion rescale and channel first will be applied.
        expected = array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0)
        np_mean = np.array(mean).astype(np.float32)[:, None, None]
        np_std = np.array(std).astype(np.float32)[:, None, None]
        expected = (expected - np_mean) / np_std
        self.assertTrue(np.array_equal(normalized_image, expected))

    def test_normalize_array(self):
        feature_extractor = ImageFeatureExtractionMixin()
        array = np.random.random((16, 32, 3))
        mean = [0.1, 0.5, 0.9]
        std = [0.2, 0.4, 0.6]

        # mean and std can be passed as lists or NumPy arrays.
        expected = (array - np.array(mean)) / np.array(std)
        normalized_array = feature_extractor.normalize(array, mean, std)
        self.assertTrue(np.array_equal(normalized_array, expected))

        normalized_array = feature_extractor.normalize(array, np.array(mean), np.array(std))
        self.assertTrue(np.array_equal(normalized_array, expected))

        # Normalize will detect automatically if channel first or channel last is used.
        array = np.random.random((3, 16, 32))
        expected = (array - np.array(mean)[:, None, None]) / np.array(std)[:, None, None]
        normalized_array = feature_extractor.normalize(array, mean, std)
        self.assertTrue(np.array_equal(normalized_array, expected))

        normalized_array = feature_extractor.normalize(array, np.array(mean), np.array(std))
        self.assertTrue(np.array_equal(normalized_array, expected))

    @require_torch
    def test_normalize_tensor(self):
        feature_extractor = ImageFeatureExtractionMixin()
        tensor = torch.rand(16, 32, 3)
        mean = [0.1, 0.5, 0.9]
        std = [0.2, 0.4, 0.6]

        # mean and std can be passed as lists or tensors.
        expected = (tensor - torch.tensor(mean)) / torch.tensor(std)
        normalized_tensor = feature_extractor.normalize(tensor, mean, std)
        self.assertTrue(torch.equal(normalized_tensor, expected))

        normalized_tensor = feature_extractor.normalize(tensor, torch.tensor(mean), torch.tensor(std))
        self.assertTrue(torch.equal(normalized_tensor, expected))

        # Normalize will detect automatically if channel first or channel last is used.
        tensor = torch.rand(3, 16, 32)
        expected = (tensor - torch.tensor(mean)[:, None, None]) / torch.tensor(std)[:, None, None]
        normalized_tensor = feature_extractor.normalize(tensor, mean, std)
        self.assertTrue(torch.equal(normalized_tensor, expected))

        normalized_tensor = feature_extractor.normalize(tensor, torch.tensor(mean), torch.tensor(std))
        self.assertTrue(torch.equal(normalized_tensor, expected))

    def test_center_crop_image(self):
        feature_extractor = ImageFeatureExtractionMixin()
        image = get_random_image(16, 32)

        # Test various crop sizes: bigger on all dimensions, on one of the dimensions only and on both dimensions.
        crop_sizes = [8, (8, 64), 20, (32, 64)]
        for size in crop_sizes:
            cropped_image = feature_extractor.center_crop(image, size)
            self.assertTrue(isinstance(cropped_image, PIL.Image.Image))

            # PIL Image.size is transposed compared to NumPy or PyTorch (width first instead of height first).
            expected_size = (size, size) if isinstance(size, int) else (size[1], size[0])
            self.assertEqual(cropped_image.size, expected_size)

    def test_center_crop_array(self):
        feature_extractor = ImageFeatureExtractionMixin()
        image = get_random_image(16, 32)
        array = feature_extractor.to_numpy_array(image)

        # Test various crop sizes: bigger on all dimensions, on one of the dimensions only and on both dimensions.
        crop_sizes = [8, (8, 64), 20, (32, 64)]
        for size in crop_sizes:
            cropped_array = feature_extractor.center_crop(array, size)
            self.assertTrue(isinstance(cropped_array, np.ndarray))

            expected_size = (size, size) if isinstance(size, int) else size
            self.assertEqual(cropped_array.shape[-2:], expected_size)

            # Check result is consistent with PIL.Image.crop
            cropped_image = feature_extractor.center_crop(image, size)
            self.assertTrue(np.array_equal(cropped_array, feature_extractor.to_numpy_array(cropped_image)))

    @require_torch
    def test_center_crop_tensor(self):
        feature_extractor = ImageFeatureExtractionMixin()
        image = get_random_image(16, 32)
        array = feature_extractor.to_numpy_array(image)
        tensor = torch.tensor(array)

        # Test various crop sizes: bigger on all dimensions, on one of the dimensions only and on both dimensions.
        crop_sizes = [8, (8, 64), 20, (32, 64)]
        for size in crop_sizes:
            cropped_tensor = feature_extractor.center_crop(tensor, size)
            self.assertTrue(isinstance(cropped_tensor, torch.Tensor))

            expected_size = (size, size) if isinstance(size, int) else size
            self.assertEqual(cropped_tensor.shape[-2:], expected_size)

            # Check result is consistent with PIL.Image.crop
            cropped_image = feature_extractor.center_crop(image, size)
            self.assertTrue(torch.equal(cropped_tensor, torch.tensor(feature_extractor.to_numpy_array(cropped_image))))


@require_vision
class LoadImageTester(unittest.TestCase):
    def test_load_img_local(self):
        img = load_image("./tests/fixtures/tests_samples/COCO/000000039769.png")
        img_arr = np.array(img)

        self.assertEqual(
            img_arr.shape,
            (480, 640, 3),
        )

    def test_load_img_rgba(self):
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")

        img = load_image(dataset[0]["file"])  # img with mode RGBA
        img_arr = np.array(img)

        self.assertEqual(
            img_arr.shape,
            (512, 512, 3),
        )

    def test_load_img_la(self):
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")

        img = load_image(dataset[1]["file"])  # img with mode LA
        img_arr = np.array(img)

        self.assertEqual(
            img_arr.shape,
            (512, 768, 3),
        )

    def test_load_img_l(self):
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")

        img = load_image(dataset[2]["file"])  # img with mode L
        img_arr = np.array(img)

        self.assertEqual(
            img_arr.shape,
            (381, 225, 3),
        )

    def test_load_img_exif_transpose(self):
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
        img_file = dataset[3]["file"]

        img_without_exif_transpose = PIL.Image.open(img_file)
        img_arr_without_exif_transpose = np.array(img_without_exif_transpose)

        self.assertEqual(
            img_arr_without_exif_transpose.shape,
            (333, 500, 3),
        )

        img_with_exif_transpose = load_image(img_file)
        img_arr_with_exif_transpose = np.array(img_with_exif_transpose)

        self.assertEqual(
            img_arr_with_exif_transpose.shape,
            (500, 333, 3),
        )


class UtilFunctionTester(unittest.TestCase):
    def test_get_image_size(self):
        # Test we can infer the size and channel dimension of an image.
        image = np.random.randint(0, 256, (32, 64, 3))
        self.assertEqual(get_image_size(image), (32, 64))

        image = np.random.randint(0, 256, (3, 32, 64))
        self.assertEqual(get_image_size(image), (32, 64))

        # Test the channel dimension can be overriden
        image = np.random.randint(0, 256, (3, 32, 64))
        self.assertEqual(get_image_size(image, channel_dim=ChannelDimension.LAST), (3, 32))

    def test_infer_channel_dimension(self):
        # Test we fail with invalid input
        with pytest.raises(ValueError):
            infer_channel_dimension_format(np.random.randint(0, 256, (10, 10)))

        with pytest.raises(ValueError):
            infer_channel_dimension_format(np.random.randint(0, 256, (10, 10, 10, 10, 10)))

        # Test we fail if neither first not last dimension is of size 3 or 1
        with pytest.raises(ValueError):
            infer_channel_dimension_format(np.random.randint(0, 256, (10, 1, 50)))

        # Test we correctly identify the channel dimension
        image = np.random.randint(0, 256, (3, 4, 5))
        inferred_dim = infer_channel_dimension_format(image)
        self.assertEqual(inferred_dim, ChannelDimension.FIRST)

        image = np.random.randint(0, 256, (1, 4, 5))
        inferred_dim = infer_channel_dimension_format(image)
        self.assertEqual(inferred_dim, ChannelDimension.FIRST)

        image = np.random.randint(0, 256, (4, 5, 3))
        inferred_dim = infer_channel_dimension_format(image)
        self.assertEqual(inferred_dim, ChannelDimension.LAST)

        image = np.random.randint(0, 256, (4, 5, 1))
        inferred_dim = infer_channel_dimension_format(image)
        self.assertEqual(inferred_dim, ChannelDimension.LAST)

        # We can take a batched array of images and find the dimension
        image = np.random.randint(0, 256, (1, 3, 4, 5))
        inferred_dim = infer_channel_dimension_format(image)
        self.assertEqual(inferred_dim, ChannelDimension.FIRST)

    def test_get_channel_dimension_axis(self):
        # Test we correctly identify the channel dimension
        image = np.random.randint(0, 256, (3, 4, 5))
        inferred_axis = get_channel_dimension_axis(image)
        self.assertEqual(inferred_axis, 0)

        image = np.random.randint(0, 256, (1, 4, 5))
        inferred_axis = get_channel_dimension_axis(image)
        self.assertEqual(inferred_axis, 0)

        image = np.random.randint(0, 256, (4, 5, 3))
        inferred_axis = get_channel_dimension_axis(image)
        self.assertEqual(inferred_axis, 2)

        image = np.random.randint(0, 256, (4, 5, 1))
        inferred_axis = get_channel_dimension_axis(image)
        self.assertEqual(inferred_axis, 2)

        # We can take a batched array of images and find the dimension
        image = np.random.randint(0, 256, (1, 3, 4, 5))
        inferred_axis = get_channel_dimension_axis(image)
        self.assertEqual(inferred_axis, 1)