Spaces:
Runtime error
Runtime error
File size: 27,697 Bytes
a1d409e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import datasets
import numpy as np
import pytest
from transformers import is_torch_available, is_vision_available
from transformers.image_utils import ChannelDimension, get_channel_dimension_axis, make_list_of_images
from transformers.testing_utils import require_torch, require_vision
if is_torch_available():
import torch
if is_vision_available():
import PIL.Image
from transformers import ImageFeatureExtractionMixin
from transformers.image_utils import get_image_size, infer_channel_dimension_format, load_image
def get_random_image(height, width):
random_array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
return PIL.Image.fromarray(random_array)
@require_vision
class ImageFeatureExtractionTester(unittest.TestCase):
def test_conversion_image_to_array(self):
feature_extractor = ImageFeatureExtractionMixin()
image = get_random_image(16, 32)
# Conversion with defaults (rescale + channel first)
array1 = feature_extractor.to_numpy_array(image)
self.assertTrue(array1.dtype, np.float32)
self.assertEqual(array1.shape, (3, 16, 32))
# Conversion with rescale and not channel first
array2 = feature_extractor.to_numpy_array(image, channel_first=False)
self.assertTrue(array2.dtype, np.float32)
self.assertEqual(array2.shape, (16, 32, 3))
self.assertTrue(np.array_equal(array1, array2.transpose(2, 0, 1)))
# Conversion with no rescale and channel first
array3 = feature_extractor.to_numpy_array(image, rescale=False)
self.assertTrue(array3.dtype, np.uint8)
self.assertEqual(array3.shape, (3, 16, 32))
self.assertTrue(np.array_equal(array1, array3.astype(np.float32) * (1 / 255.0)))
# Conversion with no rescale and not channel first
array4 = feature_extractor.to_numpy_array(image, rescale=False, channel_first=False)
self.assertTrue(array4.dtype, np.uint8)
self.assertEqual(array4.shape, (16, 32, 3))
self.assertTrue(np.array_equal(array2, array4.astype(np.float32) * (1 / 255.0)))
def test_conversion_array_to_array(self):
feature_extractor = ImageFeatureExtractionMixin()
array = np.random.randint(0, 256, (16, 32, 3), dtype=np.uint8)
# By default, rescale (for an array of ints) and channel permute
array1 = feature_extractor.to_numpy_array(array)
self.assertTrue(array1.dtype, np.float32)
self.assertEqual(array1.shape, (3, 16, 32))
self.assertTrue(np.array_equal(array1, array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0)))
# Same with no permute
array2 = feature_extractor.to_numpy_array(array, channel_first=False)
self.assertTrue(array2.dtype, np.float32)
self.assertEqual(array2.shape, (16, 32, 3))
self.assertTrue(np.array_equal(array2, array.astype(np.float32) * (1 / 255.0)))
# Force rescale to False
array3 = feature_extractor.to_numpy_array(array, rescale=False)
self.assertTrue(array3.dtype, np.uint8)
self.assertEqual(array3.shape, (3, 16, 32))
self.assertTrue(np.array_equal(array3, array.transpose(2, 0, 1)))
# Force rescale to False and no channel permute
array4 = feature_extractor.to_numpy_array(array, rescale=False, channel_first=False)
self.assertTrue(array4.dtype, np.uint8)
self.assertEqual(array4.shape, (16, 32, 3))
self.assertTrue(np.array_equal(array4, array))
# Now test the default rescale for a float array (defaults to False)
array5 = feature_extractor.to_numpy_array(array2)
self.assertTrue(array5.dtype, np.float32)
self.assertEqual(array5.shape, (3, 16, 32))
self.assertTrue(np.array_equal(array5, array1))
def test_make_list_of_images_numpy(self):
# Test a single image is converted to a list of 1 image
images = np.random.randint(0, 256, (16, 32, 3))
images_list = make_list_of_images(images)
self.assertEqual(len(images_list), 1)
self.assertTrue(np.array_equal(images_list[0], images))
self.assertIsInstance(images_list, list)
# Test a batch of images is converted to a list of images
images = np.random.randint(0, 256, (4, 16, 32, 3))
images_list = make_list_of_images(images)
self.assertEqual(len(images_list), 4)
self.assertTrue(np.array_equal(images_list[0], images[0]))
self.assertIsInstance(images_list, list)
# Test a list of images is not modified
images = [np.random.randint(0, 256, (16, 32, 3)) for _ in range(4)]
images_list = make_list_of_images(images)
self.assertEqual(len(images_list), 4)
self.assertTrue(np.array_equal(images_list[0], images[0]))
self.assertIsInstance(images_list, list)
# Test batched masks with no channel dimension are converted to a list of masks
masks = np.random.randint(0, 2, (4, 16, 32))
masks_list = make_list_of_images(masks, expected_ndims=2)
self.assertEqual(len(masks_list), 4)
self.assertTrue(np.array_equal(masks_list[0], masks[0]))
self.assertIsInstance(masks_list, list)
@require_torch
def test_make_list_of_images_torch(self):
# Test a single image is converted to a list of 1 image
images = torch.randint(0, 256, (16, 32, 3))
images_list = make_list_of_images(images)
self.assertEqual(len(images_list), 1)
self.assertTrue(np.array_equal(images_list[0], images))
self.assertIsInstance(images_list, list)
# Test a batch of images is converted to a list of images
images = torch.randint(0, 256, (4, 16, 32, 3))
images_list = make_list_of_images(images)
self.assertEqual(len(images_list), 4)
self.assertTrue(np.array_equal(images_list[0], images[0]))
self.assertIsInstance(images_list, list)
# Test a list of images is left unchanged
images = [torch.randint(0, 256, (16, 32, 3)) for _ in range(4)]
images_list = make_list_of_images(images)
self.assertEqual(len(images_list), 4)
self.assertTrue(np.array_equal(images_list[0], images[0]))
self.assertIsInstance(images_list, list)
@require_torch
def test_conversion_torch_to_array(self):
feature_extractor = ImageFeatureExtractionMixin()
tensor = torch.randint(0, 256, (16, 32, 3))
array = tensor.numpy()
# By default, rescale (for a tensor of ints) and channel permute
array1 = feature_extractor.to_numpy_array(array)
self.assertTrue(array1.dtype, np.float32)
self.assertEqual(array1.shape, (3, 16, 32))
self.assertTrue(np.array_equal(array1, array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0)))
# Same with no permute
array2 = feature_extractor.to_numpy_array(array, channel_first=False)
self.assertTrue(array2.dtype, np.float32)
self.assertEqual(array2.shape, (16, 32, 3))
self.assertTrue(np.array_equal(array2, array.astype(np.float32) * (1 / 255.0)))
# Force rescale to False
array3 = feature_extractor.to_numpy_array(array, rescale=False)
self.assertTrue(array3.dtype, np.uint8)
self.assertEqual(array3.shape, (3, 16, 32))
self.assertTrue(np.array_equal(array3, array.transpose(2, 0, 1)))
# Force rescale to False and no channel permute
array4 = feature_extractor.to_numpy_array(array, rescale=False, channel_first=False)
self.assertTrue(array4.dtype, np.uint8)
self.assertEqual(array4.shape, (16, 32, 3))
self.assertTrue(np.array_equal(array4, array))
# Now test the default rescale for a float tensor (defaults to False)
array5 = feature_extractor.to_numpy_array(array2)
self.assertTrue(array5.dtype, np.float32)
self.assertEqual(array5.shape, (3, 16, 32))
self.assertTrue(np.array_equal(array5, array1))
def test_conversion_image_to_image(self):
feature_extractor = ImageFeatureExtractionMixin()
image = get_random_image(16, 32)
# On an image, `to_pil_image1` is a noop.
image1 = feature_extractor.to_pil_image(image)
self.assertTrue(isinstance(image, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image), np.array(image1)))
def test_conversion_array_to_image(self):
feature_extractor = ImageFeatureExtractionMixin()
array = np.random.randint(0, 256, (16, 32, 3), dtype=np.uint8)
# By default, no rescale (for an array of ints)
image1 = feature_extractor.to_pil_image(array)
self.assertTrue(isinstance(image1, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image1), array))
# If the array is channel-first, proper reordering of the channels is done.
image2 = feature_extractor.to_pil_image(array.transpose(2, 0, 1))
self.assertTrue(isinstance(image2, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image2), array))
# If the array has floating type, it's rescaled by default.
image3 = feature_extractor.to_pil_image(array.astype(np.float32) * (1 / 255.0))
self.assertTrue(isinstance(image3, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image3), array))
# You can override the default to rescale.
image4 = feature_extractor.to_pil_image(array.astype(np.float32), rescale=False)
self.assertTrue(isinstance(image4, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image4), array))
# And with floats + channel first.
image5 = feature_extractor.to_pil_image(array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0))
self.assertTrue(isinstance(image5, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image5), array))
@require_torch
def test_conversion_tensor_to_image(self):
feature_extractor = ImageFeatureExtractionMixin()
tensor = torch.randint(0, 256, (16, 32, 3))
array = tensor.numpy()
# By default, no rescale (for a tensor of ints)
image1 = feature_extractor.to_pil_image(tensor)
self.assertTrue(isinstance(image1, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image1), array))
# If the tensor is channel-first, proper reordering of the channels is done.
image2 = feature_extractor.to_pil_image(tensor.permute(2, 0, 1))
self.assertTrue(isinstance(image2, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image2), array))
# If the tensor has floating type, it's rescaled by default.
image3 = feature_extractor.to_pil_image(tensor.float() / 255.0)
self.assertTrue(isinstance(image3, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image3), array))
# You can override the default to rescale.
image4 = feature_extractor.to_pil_image(tensor.float(), rescale=False)
self.assertTrue(isinstance(image4, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image4), array))
# And with floats + channel first.
image5 = feature_extractor.to_pil_image(tensor.permute(2, 0, 1).float() * (1 / 255.0))
self.assertTrue(isinstance(image5, PIL.Image.Image))
self.assertTrue(np.array_equal(np.array(image5), array))
def test_resize_image_and_array(self):
feature_extractor = ImageFeatureExtractionMixin()
image = get_random_image(16, 32)
array = np.array(image)
# Size can be an int or a tuple of ints.
resized_image = feature_extractor.resize(image, 8)
self.assertTrue(isinstance(resized_image, PIL.Image.Image))
self.assertEqual(resized_image.size, (8, 8))
resized_image1 = feature_extractor.resize(image, (8, 16))
self.assertTrue(isinstance(resized_image1, PIL.Image.Image))
self.assertEqual(resized_image1.size, (8, 16))
# Passing an array converts it to a PIL Image.
resized_image2 = feature_extractor.resize(array, 8)
self.assertTrue(isinstance(resized_image2, PIL.Image.Image))
self.assertEqual(resized_image2.size, (8, 8))
self.assertTrue(np.array_equal(np.array(resized_image), np.array(resized_image2)))
resized_image3 = feature_extractor.resize(image, (8, 16))
self.assertTrue(isinstance(resized_image3, PIL.Image.Image))
self.assertEqual(resized_image3.size, (8, 16))
self.assertTrue(np.array_equal(np.array(resized_image1), np.array(resized_image3)))
def test_resize_image_and_array_non_default_to_square(self):
feature_extractor = ImageFeatureExtractionMixin()
heights_widths = [
# height, width
# square image
(28, 28),
(27, 27),
# rectangular image: h < w
(28, 34),
(29, 35),
# rectangular image: h > w
(34, 28),
(35, 29),
]
# single integer or single integer in tuple/list
sizes = [22, 27, 28, 36, [22], (27,)]
for (height, width), size in zip(heights_widths, sizes):
for max_size in (None, 37, 1000):
image = get_random_image(height, width)
array = np.array(image)
size = size[0] if isinstance(size, (list, tuple)) else size
# Size can be an int or a tuple of ints.
# If size is an int, smaller edge of the image will be matched to this number.
# i.e, if height > width, then image will be rescaled to (size * height / width, size).
if height < width:
exp_w, exp_h = (int(size * width / height), size)
if max_size is not None and max_size < exp_w:
exp_w, exp_h = max_size, int(max_size * exp_h / exp_w)
elif width < height:
exp_w, exp_h = (size, int(size * height / width))
if max_size is not None and max_size < exp_h:
exp_w, exp_h = int(max_size * exp_w / exp_h), max_size
else:
exp_w, exp_h = (size, size)
if max_size is not None and max_size < size:
exp_w, exp_h = max_size, max_size
resized_image = feature_extractor.resize(image, size=size, default_to_square=False, max_size=max_size)
self.assertTrue(isinstance(resized_image, PIL.Image.Image))
self.assertEqual(resized_image.size, (exp_w, exp_h))
# Passing an array converts it to a PIL Image.
resized_image2 = feature_extractor.resize(array, size=size, default_to_square=False, max_size=max_size)
self.assertTrue(isinstance(resized_image2, PIL.Image.Image))
self.assertEqual(resized_image2.size, (exp_w, exp_h))
self.assertTrue(np.array_equal(np.array(resized_image), np.array(resized_image2)))
@require_torch
def test_resize_tensor(self):
feature_extractor = ImageFeatureExtractionMixin()
tensor = torch.randint(0, 256, (16, 32, 3))
array = tensor.numpy()
# Size can be an int or a tuple of ints.
resized_image = feature_extractor.resize(tensor, 8)
self.assertTrue(isinstance(resized_image, PIL.Image.Image))
self.assertEqual(resized_image.size, (8, 8))
resized_image1 = feature_extractor.resize(tensor, (8, 16))
self.assertTrue(isinstance(resized_image1, PIL.Image.Image))
self.assertEqual(resized_image1.size, (8, 16))
# Check we get the same results as with NumPy arrays.
resized_image2 = feature_extractor.resize(array, 8)
self.assertTrue(np.array_equal(np.array(resized_image), np.array(resized_image2)))
resized_image3 = feature_extractor.resize(array, (8, 16))
self.assertTrue(np.array_equal(np.array(resized_image1), np.array(resized_image3)))
def test_normalize_image(self):
feature_extractor = ImageFeatureExtractionMixin()
image = get_random_image(16, 32)
array = np.array(image)
mean = [0.1, 0.5, 0.9]
std = [0.2, 0.4, 0.6]
# PIL Image are converted to NumPy arrays for the normalization
normalized_image = feature_extractor.normalize(image, mean, std)
self.assertTrue(isinstance(normalized_image, np.ndarray))
self.assertEqual(normalized_image.shape, (3, 16, 32))
# During the conversion rescale and channel first will be applied.
expected = array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0)
np_mean = np.array(mean).astype(np.float32)[:, None, None]
np_std = np.array(std).astype(np.float32)[:, None, None]
expected = (expected - np_mean) / np_std
self.assertTrue(np.array_equal(normalized_image, expected))
def test_normalize_array(self):
feature_extractor = ImageFeatureExtractionMixin()
array = np.random.random((16, 32, 3))
mean = [0.1, 0.5, 0.9]
std = [0.2, 0.4, 0.6]
# mean and std can be passed as lists or NumPy arrays.
expected = (array - np.array(mean)) / np.array(std)
normalized_array = feature_extractor.normalize(array, mean, std)
self.assertTrue(np.array_equal(normalized_array, expected))
normalized_array = feature_extractor.normalize(array, np.array(mean), np.array(std))
self.assertTrue(np.array_equal(normalized_array, expected))
# Normalize will detect automatically if channel first or channel last is used.
array = np.random.random((3, 16, 32))
expected = (array - np.array(mean)[:, None, None]) / np.array(std)[:, None, None]
normalized_array = feature_extractor.normalize(array, mean, std)
self.assertTrue(np.array_equal(normalized_array, expected))
normalized_array = feature_extractor.normalize(array, np.array(mean), np.array(std))
self.assertTrue(np.array_equal(normalized_array, expected))
@require_torch
def test_normalize_tensor(self):
feature_extractor = ImageFeatureExtractionMixin()
tensor = torch.rand(16, 32, 3)
mean = [0.1, 0.5, 0.9]
std = [0.2, 0.4, 0.6]
# mean and std can be passed as lists or tensors.
expected = (tensor - torch.tensor(mean)) / torch.tensor(std)
normalized_tensor = feature_extractor.normalize(tensor, mean, std)
self.assertTrue(torch.equal(normalized_tensor, expected))
normalized_tensor = feature_extractor.normalize(tensor, torch.tensor(mean), torch.tensor(std))
self.assertTrue(torch.equal(normalized_tensor, expected))
# Normalize will detect automatically if channel first or channel last is used.
tensor = torch.rand(3, 16, 32)
expected = (tensor - torch.tensor(mean)[:, None, None]) / torch.tensor(std)[:, None, None]
normalized_tensor = feature_extractor.normalize(tensor, mean, std)
self.assertTrue(torch.equal(normalized_tensor, expected))
normalized_tensor = feature_extractor.normalize(tensor, torch.tensor(mean), torch.tensor(std))
self.assertTrue(torch.equal(normalized_tensor, expected))
def test_center_crop_image(self):
feature_extractor = ImageFeatureExtractionMixin()
image = get_random_image(16, 32)
# Test various crop sizes: bigger on all dimensions, on one of the dimensions only and on both dimensions.
crop_sizes = [8, (8, 64), 20, (32, 64)]
for size in crop_sizes:
cropped_image = feature_extractor.center_crop(image, size)
self.assertTrue(isinstance(cropped_image, PIL.Image.Image))
# PIL Image.size is transposed compared to NumPy or PyTorch (width first instead of height first).
expected_size = (size, size) if isinstance(size, int) else (size[1], size[0])
self.assertEqual(cropped_image.size, expected_size)
def test_center_crop_array(self):
feature_extractor = ImageFeatureExtractionMixin()
image = get_random_image(16, 32)
array = feature_extractor.to_numpy_array(image)
# Test various crop sizes: bigger on all dimensions, on one of the dimensions only and on both dimensions.
crop_sizes = [8, (8, 64), 20, (32, 64)]
for size in crop_sizes:
cropped_array = feature_extractor.center_crop(array, size)
self.assertTrue(isinstance(cropped_array, np.ndarray))
expected_size = (size, size) if isinstance(size, int) else size
self.assertEqual(cropped_array.shape[-2:], expected_size)
# Check result is consistent with PIL.Image.crop
cropped_image = feature_extractor.center_crop(image, size)
self.assertTrue(np.array_equal(cropped_array, feature_extractor.to_numpy_array(cropped_image)))
@require_torch
def test_center_crop_tensor(self):
feature_extractor = ImageFeatureExtractionMixin()
image = get_random_image(16, 32)
array = feature_extractor.to_numpy_array(image)
tensor = torch.tensor(array)
# Test various crop sizes: bigger on all dimensions, on one of the dimensions only and on both dimensions.
crop_sizes = [8, (8, 64), 20, (32, 64)]
for size in crop_sizes:
cropped_tensor = feature_extractor.center_crop(tensor, size)
self.assertTrue(isinstance(cropped_tensor, torch.Tensor))
expected_size = (size, size) if isinstance(size, int) else size
self.assertEqual(cropped_tensor.shape[-2:], expected_size)
# Check result is consistent with PIL.Image.crop
cropped_image = feature_extractor.center_crop(image, size)
self.assertTrue(torch.equal(cropped_tensor, torch.tensor(feature_extractor.to_numpy_array(cropped_image))))
@require_vision
class LoadImageTester(unittest.TestCase):
def test_load_img_local(self):
img = load_image("./tests/fixtures/tests_samples/COCO/000000039769.png")
img_arr = np.array(img)
self.assertEqual(
img_arr.shape,
(480, 640, 3),
)
def test_load_img_rgba(self):
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
img = load_image(dataset[0]["file"]) # img with mode RGBA
img_arr = np.array(img)
self.assertEqual(
img_arr.shape,
(512, 512, 3),
)
def test_load_img_la(self):
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
img = load_image(dataset[1]["file"]) # img with mode LA
img_arr = np.array(img)
self.assertEqual(
img_arr.shape,
(512, 768, 3),
)
def test_load_img_l(self):
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
img = load_image(dataset[2]["file"]) # img with mode L
img_arr = np.array(img)
self.assertEqual(
img_arr.shape,
(381, 225, 3),
)
def test_load_img_exif_transpose(self):
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
img_file = dataset[3]["file"]
img_without_exif_transpose = PIL.Image.open(img_file)
img_arr_without_exif_transpose = np.array(img_without_exif_transpose)
self.assertEqual(
img_arr_without_exif_transpose.shape,
(333, 500, 3),
)
img_with_exif_transpose = load_image(img_file)
img_arr_with_exif_transpose = np.array(img_with_exif_transpose)
self.assertEqual(
img_arr_with_exif_transpose.shape,
(500, 333, 3),
)
class UtilFunctionTester(unittest.TestCase):
def test_get_image_size(self):
# Test we can infer the size and channel dimension of an image.
image = np.random.randint(0, 256, (32, 64, 3))
self.assertEqual(get_image_size(image), (32, 64))
image = np.random.randint(0, 256, (3, 32, 64))
self.assertEqual(get_image_size(image), (32, 64))
# Test the channel dimension can be overriden
image = np.random.randint(0, 256, (3, 32, 64))
self.assertEqual(get_image_size(image, channel_dim=ChannelDimension.LAST), (3, 32))
def test_infer_channel_dimension(self):
# Test we fail with invalid input
with pytest.raises(ValueError):
infer_channel_dimension_format(np.random.randint(0, 256, (10, 10)))
with pytest.raises(ValueError):
infer_channel_dimension_format(np.random.randint(0, 256, (10, 10, 10, 10, 10)))
# Test we fail if neither first not last dimension is of size 3 or 1
with pytest.raises(ValueError):
infer_channel_dimension_format(np.random.randint(0, 256, (10, 1, 50)))
# Test we correctly identify the channel dimension
image = np.random.randint(0, 256, (3, 4, 5))
inferred_dim = infer_channel_dimension_format(image)
self.assertEqual(inferred_dim, ChannelDimension.FIRST)
image = np.random.randint(0, 256, (1, 4, 5))
inferred_dim = infer_channel_dimension_format(image)
self.assertEqual(inferred_dim, ChannelDimension.FIRST)
image = np.random.randint(0, 256, (4, 5, 3))
inferred_dim = infer_channel_dimension_format(image)
self.assertEqual(inferred_dim, ChannelDimension.LAST)
image = np.random.randint(0, 256, (4, 5, 1))
inferred_dim = infer_channel_dimension_format(image)
self.assertEqual(inferred_dim, ChannelDimension.LAST)
# We can take a batched array of images and find the dimension
image = np.random.randint(0, 256, (1, 3, 4, 5))
inferred_dim = infer_channel_dimension_format(image)
self.assertEqual(inferred_dim, ChannelDimension.FIRST)
def test_get_channel_dimension_axis(self):
# Test we correctly identify the channel dimension
image = np.random.randint(0, 256, (3, 4, 5))
inferred_axis = get_channel_dimension_axis(image)
self.assertEqual(inferred_axis, 0)
image = np.random.randint(0, 256, (1, 4, 5))
inferred_axis = get_channel_dimension_axis(image)
self.assertEqual(inferred_axis, 0)
image = np.random.randint(0, 256, (4, 5, 3))
inferred_axis = get_channel_dimension_axis(image)
self.assertEqual(inferred_axis, 2)
image = np.random.randint(0, 256, (4, 5, 1))
inferred_axis = get_channel_dimension_axis(image)
self.assertEqual(inferred_axis, 2)
# We can take a batched array of images and find the dimension
image = np.random.randint(0, 256, (1, 3, 4, 5))
inferred_axis = get_channel_dimension_axis(image)
self.assertEqual(inferred_axis, 1)
|