Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
import logging | |
import os | |
import sys | |
from dataclasses import dataclass, field | |
from typing import Optional | |
import numpy as np | |
import torch | |
from datasets import load_dataset | |
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor | |
import transformers | |
from transformers import ( | |
CONFIG_MAPPING, | |
IMAGE_PROCESSOR_MAPPING, | |
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, | |
AutoConfig, | |
AutoImageProcessor, | |
AutoModelForMaskedImageModeling, | |
HfArgumentParser, | |
Trainer, | |
TrainingArguments, | |
) | |
from transformers.trainer_utils import get_last_checkpoint | |
from transformers.utils import check_min_version, send_example_telemetry | |
from transformers.utils.versions import require_version | |
""" Pre-training a 🤗 Transformers model for simple masked image modeling (SimMIM). | |
Any model supported by the AutoModelForMaskedImageModeling API can be used. | |
""" | |
logger = logging.getLogger(__name__) | |
# Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
check_min_version("4.28.0") | |
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") | |
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) | |
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to | |
specify them on the command line. | |
""" | |
dataset_name: Optional[str] = field( | |
default="cifar10", metadata={"help": "Name of a dataset from the datasets package"} | |
) | |
dataset_config_name: Optional[str] = field( | |
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
) | |
image_column_name: Optional[str] = field( | |
default=None, | |
metadata={"help": "The column name of the images in the files. If not set, will try to use 'image' or 'img'."}, | |
) | |
train_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the training data."}) | |
validation_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the validation data."}) | |
train_val_split: Optional[float] = field( | |
default=0.15, metadata={"help": "Percent to split off of train for validation."} | |
) | |
mask_patch_size: int = field(default=32, metadata={"help": "The size of the square patches to use for masking."}) | |
mask_ratio: float = field( | |
default=0.6, | |
metadata={"help": "Percentage of patches to mask."}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_eval_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
"value if set." | |
) | |
}, | |
) | |
def __post_init__(self): | |
data_files = {} | |
if self.train_dir is not None: | |
data_files["train"] = self.train_dir | |
if self.validation_dir is not None: | |
data_files["val"] = self.validation_dir | |
self.data_files = data_files if data_files else None | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/image processor we are going to pre-train. | |
""" | |
model_name_or_path: str = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a " | |
"checkpoint identifier on the hub. " | |
"Don't set if you want to train a model from scratch." | |
) | |
}, | |
) | |
model_type: Optional[str] = field( | |
default=None, | |
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, | |
) | |
config_name_or_path: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
config_overrides: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"Override some existing default config settings when a model is trained from scratch. Example: " | |
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" | |
) | |
}, | |
) | |
cache_dir: Optional[str] = field( | |
default=None, | |
metadata={"help": "Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"}, | |
) | |
model_revision: str = field( | |
default="main", | |
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
) | |
image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."}) | |
use_auth_token: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " | |
"with private models)." | |
) | |
}, | |
) | |
image_size: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"The size (resolution) of each image. If not specified, will use `image_size` of the configuration." | |
) | |
}, | |
) | |
patch_size: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration." | |
) | |
}, | |
) | |
encoder_stride: Optional[int] = field( | |
default=None, | |
metadata={"help": "Stride to use for the encoder."}, | |
) | |
class MaskGenerator: | |
""" | |
A class to generate boolean masks for the pretraining task. | |
A mask is a 1D tensor of shape (model_patch_size**2,) where the value is either 0 or 1, | |
where 1 indicates "masked". | |
""" | |
def __init__(self, input_size=192, mask_patch_size=32, model_patch_size=4, mask_ratio=0.6): | |
self.input_size = input_size | |
self.mask_patch_size = mask_patch_size | |
self.model_patch_size = model_patch_size | |
self.mask_ratio = mask_ratio | |
if self.input_size % self.mask_patch_size != 0: | |
raise ValueError("Input size must be divisible by mask patch size") | |
if self.mask_patch_size % self.model_patch_size != 0: | |
raise ValueError("Mask patch size must be divisible by model patch size") | |
self.rand_size = self.input_size // self.mask_patch_size | |
self.scale = self.mask_patch_size // self.model_patch_size | |
self.token_count = self.rand_size**2 | |
self.mask_count = int(np.ceil(self.token_count * self.mask_ratio)) | |
def __call__(self): | |
mask_idx = np.random.permutation(self.token_count)[: self.mask_count] | |
mask = np.zeros(self.token_count, dtype=int) | |
mask[mask_idx] = 1 | |
mask = mask.reshape((self.rand_size, self.rand_size)) | |
mask = mask.repeat(self.scale, axis=0).repeat(self.scale, axis=1) | |
return torch.tensor(mask.flatten()) | |
def collate_fn(examples): | |
pixel_values = torch.stack([example["pixel_values"] for example in examples]) | |
mask = torch.stack([example["mask"] for example in examples]) | |
return {"pixel_values": pixel_values, "bool_masked_pos": mask} | |
def main(): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
# information sent is the one passed as arguments along with your Python/PyTorch versions. | |
send_example_telemetry("run_mim", model_args, data_args) | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
if training_args.should_log: | |
# The default of training_args.log_level is passive, so we set log level at info here to have that default. | |
transformers.utils.logging.set_verbosity_info() | |
log_level = training_args.get_process_log_level() | |
logger.setLevel(log_level) | |
transformers.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
# Log on each process the small summary: | |
logger.warning( | |
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | |
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | |
) | |
logger.info(f"Training/evaluation parameters {training_args}") | |
# Detecting last checkpoint. | |
last_checkpoint = None | |
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: | |
last_checkpoint = get_last_checkpoint(training_args.output_dir) | |
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
"Use --overwrite_output_dir to overcome." | |
) | |
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: | |
logger.info( | |
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | |
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
) | |
# Initialize our dataset. | |
ds = load_dataset( | |
data_args.dataset_name, | |
data_args.dataset_config_name, | |
data_files=data_args.data_files, | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
# If we don't have a validation split, split off a percentage of train as validation. | |
data_args.train_val_split = None if "validation" in ds.keys() else data_args.train_val_split | |
if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0: | |
split = ds["train"].train_test_split(data_args.train_val_split) | |
ds["train"] = split["train"] | |
ds["validation"] = split["test"] | |
# Create config | |
# Distributed training: | |
# The .from_pretrained methods guarantee that only one local process can concurrently | |
# download model & vocab. | |
config_kwargs = { | |
"cache_dir": model_args.cache_dir, | |
"revision": model_args.model_revision, | |
"use_auth_token": True if model_args.use_auth_token else None, | |
} | |
if model_args.config_name_or_path: | |
config = AutoConfig.from_pretrained(model_args.config_name_or_path, **config_kwargs) | |
elif model_args.model_name_or_path: | |
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) | |
else: | |
config = CONFIG_MAPPING[model_args.model_type]() | |
logger.warning("You are instantiating a new config instance from scratch.") | |
if model_args.config_overrides is not None: | |
logger.info(f"Overriding config: {model_args.config_overrides}") | |
config.update_from_string(model_args.config_overrides) | |
logger.info(f"New config: {config}") | |
# make sure the decoder_type is "simmim" (only relevant for BEiT) | |
if hasattr(config, "decoder_type"): | |
config.decoder_type = "simmim" | |
# adapt config | |
model_args.image_size = model_args.image_size if model_args.image_size is not None else config.image_size | |
model_args.patch_size = model_args.patch_size if model_args.patch_size is not None else config.patch_size | |
model_args.encoder_stride = ( | |
model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride | |
) | |
config.update( | |
{ | |
"image_size": model_args.image_size, | |
"patch_size": model_args.patch_size, | |
"encoder_stride": model_args.encoder_stride, | |
} | |
) | |
# create image processor | |
if model_args.image_processor_name: | |
image_processor = AutoImageProcessor.from_pretrained(model_args.image_processor_name, **config_kwargs) | |
elif model_args.model_name_or_path: | |
image_processor = AutoImageProcessor.from_pretrained(model_args.model_name_or_path, **config_kwargs) | |
else: | |
IMAGE_PROCESSOR_TYPES = { | |
conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() | |
} | |
image_processor = IMAGE_PROCESSOR_TYPES[model_args.model_type]() | |
# create model | |
if model_args.model_name_or_path: | |
model = AutoModelForMaskedImageModeling.from_pretrained( | |
model_args.model_name_or_path, | |
from_tf=bool(".ckpt" in model_args.model_name_or_path), | |
config=config, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
else: | |
logger.info("Training new model from scratch") | |
model = AutoModelForMaskedImageModeling.from_config(config) | |
if training_args.do_train: | |
column_names = ds["train"].column_names | |
else: | |
column_names = ds["validation"].column_names | |
if data_args.image_column_name is not None: | |
image_column_name = data_args.image_column_name | |
elif "image" in column_names: | |
image_column_name = "image" | |
elif "img" in column_names: | |
image_column_name = "img" | |
else: | |
image_column_name = column_names[0] | |
# transformations as done in original SimMIM paper | |
# source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py | |
transforms = Compose( | |
[ | |
Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), | |
RandomResizedCrop(model_args.image_size, scale=(0.67, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0)), | |
RandomHorizontalFlip(), | |
ToTensor(), | |
Normalize(mean=image_processor.image_mean, std=image_processor.image_std), | |
] | |
) | |
# create mask generator | |
mask_generator = MaskGenerator( | |
input_size=model_args.image_size, | |
mask_patch_size=data_args.mask_patch_size, | |
model_patch_size=model_args.patch_size, | |
mask_ratio=data_args.mask_ratio, | |
) | |
def preprocess_images(examples): | |
"""Preprocess a batch of images by applying transforms + creating a corresponding mask, indicating | |
which patches to mask.""" | |
examples["pixel_values"] = [transforms(image) for image in examples[image_column_name]] | |
examples["mask"] = [mask_generator() for i in range(len(examples[image_column_name]))] | |
return examples | |
if training_args.do_train: | |
if "train" not in ds: | |
raise ValueError("--do_train requires a train dataset") | |
if data_args.max_train_samples is not None: | |
ds["train"] = ds["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples)) | |
# Set the training transforms | |
ds["train"].set_transform(preprocess_images) | |
if training_args.do_eval: | |
if "validation" not in ds: | |
raise ValueError("--do_eval requires a validation dataset") | |
if data_args.max_eval_samples is not None: | |
ds["validation"] = ( | |
ds["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples)) | |
) | |
# Set the validation transforms | |
ds["validation"].set_transform(preprocess_images) | |
# Initialize our trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=ds["train"] if training_args.do_train else None, | |
eval_dataset=ds["validation"] if training_args.do_eval else None, | |
tokenizer=image_processor, | |
data_collator=collate_fn, | |
) | |
# Training | |
if training_args.do_train: | |
checkpoint = None | |
if training_args.resume_from_checkpoint is not None: | |
checkpoint = training_args.resume_from_checkpoint | |
elif last_checkpoint is not None: | |
checkpoint = last_checkpoint | |
train_result = trainer.train(resume_from_checkpoint=checkpoint) | |
trainer.save_model() | |
trainer.log_metrics("train", train_result.metrics) | |
trainer.save_metrics("train", train_result.metrics) | |
trainer.save_state() | |
# Evaluation | |
if training_args.do_eval: | |
metrics = trainer.evaluate() | |
trainer.log_metrics("eval", metrics) | |
trainer.save_metrics("eval", metrics) | |
# Write model card and (optionally) push to hub | |
kwargs = { | |
"finetuned_from": model_args.model_name_or_path, | |
"tasks": "masked-image-modeling", | |
"dataset": data_args.dataset_name, | |
"tags": ["masked-image-modeling"], | |
} | |
if training_args.push_to_hub: | |
trainer.push_to_hub(**kwargs) | |
else: | |
trainer.create_model_card(**kwargs) | |
if __name__ == "__main__": | |
main() | |