Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 HuggingFace Inc.. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import json | |
import logging | |
import os | |
import shutil | |
import sys | |
import tempfile | |
from unittest import mock | |
import torch | |
from accelerate.utils import write_basic_config | |
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device | |
from transformers.utils import is_apex_available | |
logging.basicConfig(level=logging.DEBUG) | |
logger = logging.getLogger() | |
def get_setup_file(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-f") | |
args = parser.parse_args() | |
return args.f | |
def get_results(output_dir): | |
results = {} | |
path = os.path.join(output_dir, "all_results.json") | |
if os.path.exists(path): | |
with open(path, "r") as f: | |
results = json.load(f) | |
else: | |
raise ValueError(f"can't find {path}") | |
return results | |
def is_cuda_and_apex_available(): | |
is_using_cuda = torch.cuda.is_available() and torch_device == "cuda" | |
return is_using_cuda and is_apex_available() | |
stream_handler = logging.StreamHandler(sys.stdout) | |
logger.addHandler(stream_handler) | |
class ExamplesTestsNoTrainer(TestCasePlus): | |
def setUpClass(cls): | |
# Write Accelerate config, will pick up on CPU, GPU, and multi-GPU | |
cls.tmpdir = tempfile.mkdtemp() | |
cls.configPath = os.path.join(cls.tmpdir, "default_config.yml") | |
write_basic_config(save_location=cls.configPath) | |
cls._launch_args = ["accelerate", "launch", "--config_file", cls.configPath] | |
def tearDownClass(cls): | |
shutil.rmtree(cls.tmpdir) | |
def test_run_glue_no_trainer(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py | |
--model_name_or_path distilbert-base-uncased | |
--output_dir {tmp_dir} | |
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv | |
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv | |
--per_device_train_batch_size=2 | |
--per_device_eval_batch_size=1 | |
--learning_rate=1e-4 | |
--seed=42 | |
--checkpointing_steps epoch | |
--with_tracking | |
""".split() | |
if is_cuda_and_apex_available(): | |
testargs.append("--fp16") | |
run_command(self._launch_args + testargs) | |
result = get_results(tmp_dir) | |
self.assertGreaterEqual(result["eval_accuracy"], 0.75) | |
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0"))) | |
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "glue_no_trainer"))) | |
def test_run_clm_no_trainer(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py | |
--model_name_or_path distilgpt2 | |
--train_file ./tests/fixtures/sample_text.txt | |
--validation_file ./tests/fixtures/sample_text.txt | |
--block_size 128 | |
--per_device_train_batch_size 5 | |
--per_device_eval_batch_size 5 | |
--num_train_epochs 2 | |
--output_dir {tmp_dir} | |
--checkpointing_steps epoch | |
--with_tracking | |
""".split() | |
if torch.cuda.device_count() > 1: | |
# Skipping because there are not enough batches to train the model + would need a drop_last to work. | |
return | |
run_command(self._launch_args + testargs) | |
result = get_results(tmp_dir) | |
self.assertLess(result["perplexity"], 100) | |
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0"))) | |
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "clm_no_trainer"))) | |
def test_run_mlm_no_trainer(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py | |
--model_name_or_path distilroberta-base | |
--train_file ./tests/fixtures/sample_text.txt | |
--validation_file ./tests/fixtures/sample_text.txt | |
--output_dir {tmp_dir} | |
--num_train_epochs=1 | |
--checkpointing_steps epoch | |
--with_tracking | |
""".split() | |
run_command(self._launch_args + testargs) | |
result = get_results(tmp_dir) | |
self.assertLess(result["perplexity"], 42) | |
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0"))) | |
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "mlm_no_trainer"))) | |
def test_run_ner_no_trainer(self): | |
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu | |
epochs = 7 if get_gpu_count() > 1 else 2 | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py | |
--model_name_or_path bert-base-uncased | |
--train_file tests/fixtures/tests_samples/conll/sample.json | |
--validation_file tests/fixtures/tests_samples/conll/sample.json | |
--output_dir {tmp_dir} | |
--learning_rate=2e-4 | |
--per_device_train_batch_size=2 | |
--per_device_eval_batch_size=2 | |
--num_train_epochs={epochs} | |
--seed 7 | |
--checkpointing_steps epoch | |
--with_tracking | |
""".split() | |
run_command(self._launch_args + testargs) | |
result = get_results(tmp_dir) | |
self.assertGreaterEqual(result["eval_accuracy"], 0.75) | |
self.assertLess(result["train_loss"], 0.5) | |
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0"))) | |
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "ner_no_trainer"))) | |
def test_run_squad_no_trainer(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py | |
--model_name_or_path bert-base-uncased | |
--version_2_with_negative | |
--train_file tests/fixtures/tests_samples/SQUAD/sample.json | |
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json | |
--output_dir {tmp_dir} | |
--seed=42 | |
--max_train_steps=10 | |
--num_warmup_steps=2 | |
--learning_rate=2e-4 | |
--per_device_train_batch_size=2 | |
--per_device_eval_batch_size=1 | |
--checkpointing_steps epoch | |
--with_tracking | |
""".split() | |
run_command(self._launch_args + testargs) | |
result = get_results(tmp_dir) | |
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. | |
self.assertGreaterEqual(result["eval_f1"], 28) | |
self.assertGreaterEqual(result["eval_exact"], 28) | |
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0"))) | |
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "qa_no_trainer"))) | |
def test_run_swag_no_trainer(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py | |
--model_name_or_path bert-base-uncased | |
--train_file tests/fixtures/tests_samples/swag/sample.json | |
--validation_file tests/fixtures/tests_samples/swag/sample.json | |
--output_dir {tmp_dir} | |
--max_train_steps=20 | |
--num_warmup_steps=2 | |
--learning_rate=2e-4 | |
--per_device_train_batch_size=2 | |
--per_device_eval_batch_size=1 | |
--with_tracking | |
""".split() | |
run_command(self._launch_args + testargs) | |
result = get_results(tmp_dir) | |
self.assertGreaterEqual(result["eval_accuracy"], 0.8) | |
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "swag_no_trainer"))) | |
def test_run_summarization_no_trainer(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py | |
--model_name_or_path t5-small | |
--train_file tests/fixtures/tests_samples/xsum/sample.json | |
--validation_file tests/fixtures/tests_samples/xsum/sample.json | |
--output_dir {tmp_dir} | |
--max_train_steps=50 | |
--num_warmup_steps=8 | |
--learning_rate=2e-4 | |
--per_device_train_batch_size=2 | |
--per_device_eval_batch_size=1 | |
--checkpointing_steps epoch | |
--with_tracking | |
""".split() | |
run_command(self._launch_args + testargs) | |
result = get_results(tmp_dir) | |
self.assertGreaterEqual(result["eval_rouge1"], 10) | |
self.assertGreaterEqual(result["eval_rouge2"], 2) | |
self.assertGreaterEqual(result["eval_rougeL"], 7) | |
self.assertGreaterEqual(result["eval_rougeLsum"], 7) | |
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0"))) | |
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "summarization_no_trainer"))) | |
def test_run_translation_no_trainer(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py | |
--model_name_or_path sshleifer/student_marian_en_ro_6_1 | |
--source_lang en | |
--target_lang ro | |
--train_file tests/fixtures/tests_samples/wmt16/sample.json | |
--validation_file tests/fixtures/tests_samples/wmt16/sample.json | |
--output_dir {tmp_dir} | |
--max_train_steps=50 | |
--num_warmup_steps=8 | |
--learning_rate=3e-3 | |
--per_device_train_batch_size=2 | |
--per_device_eval_batch_size=1 | |
--source_lang en_XX | |
--target_lang ro_RO | |
--checkpointing_steps epoch | |
--with_tracking | |
""".split() | |
run_command(self._launch_args + testargs) | |
result = get_results(tmp_dir) | |
self.assertGreaterEqual(result["eval_bleu"], 30) | |
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0"))) | |
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "translation_no_trainer"))) | |
def test_run_semantic_segmentation_no_trainer(self): | |
stream_handler = logging.StreamHandler(sys.stdout) | |
logger.addHandler(stream_handler) | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py | |
--dataset_name huggingface/semantic-segmentation-test-sample | |
--output_dir {tmp_dir} | |
--max_train_steps=10 | |
--num_warmup_steps=2 | |
--learning_rate=2e-4 | |
--per_device_train_batch_size=2 | |
--per_device_eval_batch_size=1 | |
--checkpointing_steps epoch | |
""".split() | |
run_command(self._launch_args + testargs) | |
result = get_results(tmp_dir) | |
self.assertGreaterEqual(result["eval_overall_accuracy"], 0.10) | |
def test_run_image_classification_no_trainer(self): | |
tmp_dir = self.get_auto_remove_tmp_dir() | |
testargs = f""" | |
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py | |
--model_name_or_path google/vit-base-patch16-224-in21k | |
--dataset_name hf-internal-testing/cats_vs_dogs_sample | |
--learning_rate 1e-4 | |
--per_device_train_batch_size 2 | |
--per_device_eval_batch_size 1 | |
--max_train_steps 2 | |
--train_val_split 0.1 | |
--seed 42 | |
--output_dir {tmp_dir} | |
--with_tracking | |
--checkpointing_steps 1 | |
""".split() | |
if is_cuda_and_apex_available(): | |
testargs.append("--fp16") | |
run_command(self._launch_args + testargs) | |
result = get_results(tmp_dir) | |
# The base model scores a 25% | |
self.assertGreaterEqual(result["eval_accuracy"], 0.6) | |
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "step_1"))) | |
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "image_classification_no_trainer"))) | |