chendl's picture
add requirements
a1d409e
raw
history blame
1.19 kB
import numpy as np
import PIL
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as TF
from PIL import Image
def preprocess(img, target_image_size=256):
s = min(img.size)
if s < target_image_size:
raise ValueError(f"min dim for image {s} < {target_image_size}")
r = target_image_size / s
s = (round(r * img.size[1]), round(r * img.size[0]))
img = TF.resize(img, s, interpolation=PIL.Image.LANCZOS)
img = TF.center_crop(img, output_size=2 * [target_image_size])
img = torch.unsqueeze(T.ToTensor()(img), 0)
return img
def preprocess_vqgan(x):
x = 2.0 * x - 1.0
return x
def custom_to_pil(x, process=True, mode="RGB"):
x = x.detach().cpu()
if process:
x = post_process_tensor(x)
x = x.numpy()
if process:
x = (255 * x).astype(np.uint8)
x = Image.fromarray(x)
if not x.mode == mode:
x = x.convert(mode)
return x
def post_process_tensor(x):
x = torch.clamp(x, -1.0, 1.0)
x = (x + 1.0) / 2.0
x = x.permute(1, 2, 0)
return x
def loop_post_process(x):
x = post_process_tensor(x.squeeze())
return x.permute(2, 0, 1).unsqueeze(0)