Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- coding:utf-8 -*- | |
# Copyright (c) Megvii, Inc. and its affiliates. | |
import argparse | |
import os | |
import random | |
import warnings | |
from loguru import logger | |
import torch | |
import torch.backends.cudnn as cudnn | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
from yolox.core import launch | |
from yolox.exp import get_exp | |
from yolox.utils import ( | |
configure_module, | |
configure_nccl, | |
fuse_model, | |
get_local_rank, | |
get_model_info, | |
setup_logger | |
) | |
def make_parser(): | |
parser = argparse.ArgumentParser("YOLOX Eval") | |
parser.add_argument("-expn", "--experiment-name", type=str, default=None) | |
parser.add_argument("-n", "--name", type=str, default=None, help="model name") | |
# distributed | |
parser.add_argument( | |
"--dist-backend", default="nccl", type=str, help="distributed backend" | |
) | |
parser.add_argument( | |
"--dist-url", | |
default=None, | |
type=str, | |
help="url used to set up distributed training", | |
) | |
parser.add_argument("-b", "--batch-size", type=int, default=64, help="batch size") | |
parser.add_argument( | |
"-d", "--devices", default=None, type=int, help="device for training" | |
) | |
parser.add_argument( | |
"--num_machines", default=1, type=int, help="num of node for training" | |
) | |
parser.add_argument( | |
"--machine_rank", default=0, type=int, help="node rank for multi-node training" | |
) | |
parser.add_argument( | |
"-f", | |
"--exp_file", | |
default=None, | |
type=str, | |
help="please input your experiment description file", | |
) | |
parser.add_argument("-c", "--ckpt", default=None, type=str, help="ckpt for eval") | |
parser.add_argument("--conf", default=None, type=float, help="test conf") | |
parser.add_argument("--nms", default=None, type=float, help="test nms threshold") | |
parser.add_argument("--tsize", default=None, type=int, help="test img size") | |
parser.add_argument("--seed", default=None, type=int, help="eval seed") | |
parser.add_argument( | |
"--fp16", | |
dest="fp16", | |
default=False, | |
action="store_true", | |
help="Adopting mix precision evaluating.", | |
) | |
parser.add_argument( | |
"--fuse", | |
dest="fuse", | |
default=False, | |
action="store_true", | |
help="Fuse conv and bn for testing.", | |
) | |
parser.add_argument( | |
"--trt", | |
dest="trt", | |
default=False, | |
action="store_true", | |
help="Using TensorRT model for testing.", | |
) | |
parser.add_argument( | |
"--legacy", | |
dest="legacy", | |
default=False, | |
action="store_true", | |
help="To be compatible with older versions", | |
) | |
parser.add_argument( | |
"--test", | |
dest="test", | |
default=False, | |
action="store_true", | |
help="Evaluating on test-dev set.", | |
) | |
parser.add_argument( | |
"--speed", | |
dest="speed", | |
default=False, | |
action="store_true", | |
help="speed test only.", | |
) | |
parser.add_argument( | |
"opts", | |
help="Modify config options using the command-line", | |
default=None, | |
nargs=argparse.REMAINDER, | |
) | |
return parser | |
def main(exp, args, num_gpu): | |
if args.seed is not None: | |
random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
cudnn.deterministic = True | |
warnings.warn( | |
"You have chosen to seed testing. This will turn on the CUDNN deterministic setting, " | |
) | |
is_distributed = num_gpu > 1 | |
# set environment variables for distributed training | |
configure_nccl() | |
cudnn.benchmark = True | |
rank = get_local_rank() | |
file_name = os.path.join(exp.output_dir, args.experiment_name) | |
if rank == 0: | |
os.makedirs(file_name, exist_ok=True) | |
setup_logger(file_name, distributed_rank=rank, filename="val_log.txt", mode="a") | |
logger.info("Args: {}".format(args)) | |
if args.conf is not None: | |
exp.test_conf = args.conf | |
if args.nms is not None: | |
exp.nmsthre = args.nms | |
if args.tsize is not None: | |
exp.test_size = (args.tsize, args.tsize) | |
model = exp.get_model() | |
logger.info("Model Summary: {}".format(get_model_info(model, exp.test_size))) | |
logger.info("Model Structure:\n{}".format(str(model))) | |
evaluator = exp.get_evaluator(args.batch_size, is_distributed, args.test, args.legacy) | |
evaluator.per_class_AP = True | |
evaluator.per_class_AR = True | |
torch.cuda.set_device(rank) | |
model.cuda(rank) | |
model.eval() | |
if not args.speed and not args.trt: | |
if args.ckpt is None: | |
ckpt_file = os.path.join(file_name, "best_ckpt.pth") | |
else: | |
ckpt_file = args.ckpt | |
logger.info("loading checkpoint from {}".format(ckpt_file)) | |
loc = "cuda:{}".format(rank) | |
ckpt = torch.load(ckpt_file, map_location=loc) | |
model.load_state_dict(ckpt["model"]) | |
logger.info("loaded checkpoint done.") | |
if is_distributed: | |
model = DDP(model, device_ids=[rank]) | |
if args.fuse: | |
logger.info("\tFusing model...") | |
model = fuse_model(model) | |
if args.trt: | |
assert ( | |
not args.fuse and not is_distributed and args.batch_size == 1 | |
), "TensorRT model is not support model fusing and distributed inferencing!" | |
trt_file = os.path.join(file_name, "model_trt.pth") | |
assert os.path.exists( | |
trt_file | |
), "TensorRT model is not found!\n Run tools/trt.py first!" | |
model.head.decode_in_inference = False | |
decoder = model.head.decode_outputs | |
else: | |
trt_file = None | |
decoder = None | |
# start evaluate | |
*_, summary = evaluator.evaluate( | |
model, is_distributed, args.fp16, trt_file, decoder, exp.test_size | |
) | |
logger.info("\n" + summary) | |
if __name__ == "__main__": | |
configure_module() | |
args = make_parser().parse_args() | |
exp = get_exp(args.exp_file, args.name) | |
exp.merge(args.opts) | |
if not args.experiment_name: | |
args.experiment_name = exp.exp_name | |
num_gpu = torch.cuda.device_count() if args.devices is None else args.devices | |
assert num_gpu <= torch.cuda.device_count() | |
dist_url = "auto" if args.dist_url is None else args.dist_url | |
launch( | |
main, | |
num_gpu, | |
args.num_machines, | |
args.machine_rank, | |
backend=args.dist_backend, | |
dist_url=dist_url, | |
args=(exp, args, num_gpu), | |
) | |