Spaces:
Runtime error
Runtime error
# import unittest | |
# import requests | |
# from PIL import Image | |
# from open_flamingo import create_model_and_transforms | |
# class TestFlamingoModel(unittest.TestCase): | |
# def test_forward_pass(self): | |
# model, image_processor, tokenizer = create_model_and_transforms( | |
# clip_vision_encoder_path="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", | |
# clip_processor_path="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", | |
# lang_encoder_path="hf-internal-testing/tiny-random-OPTModel", | |
# tokenizer_path="hf-internal-testing/tiny-random-OPTModel", | |
# ) | |
# image = Image.open( | |
# requests.get( | |
# "http://images.cocodataset.org/val2017/000000039769.jpg", stream=True | |
# ).raw | |
# ) | |
# vis_x = image_processor(images=[image, image], return_tensors="pt")[ | |
# "pixel_values" | |
# ] | |
# vis_x = vis_x.unsqueeze(1).unsqueeze(1) | |
# lang_x = tokenizer( | |
# ["<|#image#|> A dog", "<|#image#|> A cat"], | |
# max_length=10, | |
# padding=True, | |
# truncation=True, | |
# return_tensors="pt", | |
# ) | |
# # try batched forward pass | |
# model(vis_x, lang_x["input_ids"], attention_mask=lang_x["attention_mask"]) | |
# def test_generate(self): | |
# model, image_processor, tokenizer = create_model_and_transforms( | |
# clip_vision_encoder_path="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", | |
# clip_processor_path="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", | |
# lang_encoder_path="hf-internal-testing/tiny-random-OPTModel", | |
# tokenizer_path="hf-internal-testing/tiny-random-OPTModel", | |
# ) | |
# tokenizer.padding_side = ( | |
# "left" # we want to pad on the left side for generation | |
# ) | |
# image = Image.open( | |
# requests.get( | |
# "http://images.cocodataset.org/val2017/000000039769.jpg", stream=True | |
# ).raw | |
# ) | |
# vis_x = image_processor(images=[image, image], return_tensors="pt")[ | |
# "pixel_values" | |
# ] | |
# vis_x = vis_x.unsqueeze(1).unsqueeze(1) | |
# lang_x = tokenizer( | |
# ["<|#image#|> A dog", "<|#image#|> A cat <|endofchunk|>"], | |
# max_length=10, | |
# padding=True, | |
# truncation=True, | |
# return_tensors="pt", | |
# ) | |
# # try batched generation | |
# model.generate( | |
# vis_x, | |
# lang_x["input_ids"], | |
# attention_mask=lang_x["attention_mask"], | |
# max_new_tokens=20, | |
# ) | |
# if __name__ == "__main__": | |
# unittest.main() | |