Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Usage: | |
# ./gen-card-allenai-wmt16.py | |
import os | |
from pathlib import Path | |
def write_model_card(model_card_dir, src_lang, tgt_lang, model_name): | |
texts = { | |
"en": "Machine learning is great, isn't it?", | |
"ru": "Машинное обучение - это здорово, не так ли?", | |
"de": "Maschinelles Lernen ist großartig, nicht wahr?", | |
} | |
# BLUE scores as follows: | |
# "pair": [fairseq, transformers] | |
scores = { | |
"wmt16-en-de-dist-12-1": [28.3, 27.52], | |
"wmt16-en-de-dist-6-1": [27.4, 27.11], | |
"wmt16-en-de-12-1": [26.9, 25.75], | |
} | |
pair = f"{src_lang}-{tgt_lang}" | |
readme = f""" | |
--- | |
language: | |
- {src_lang} | |
- {tgt_lang} | |
thumbnail: | |
tags: | |
- translation | |
- wmt16 | |
- allenai | |
license: apache-2.0 | |
datasets: | |
- wmt16 | |
metrics: | |
- bleu | |
--- | |
# FSMT | |
## Model description | |
This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. | |
For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). | |
All 3 models are available: | |
* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) | |
* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) | |
* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) | |
## Intended uses & limitations | |
#### How to use | |
```python | |
from transformers import FSMTForConditionalGeneration, FSMTTokenizer | |
mname = "allenai/{model_name}" | |
tokenizer = FSMTTokenizer.from_pretrained(mname) | |
model = FSMTForConditionalGeneration.from_pretrained(mname) | |
input = "{texts[src_lang]}" | |
input_ids = tokenizer.encode(input, return_tensors="pt") | |
outputs = model.generate(input_ids) | |
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
print(decoded) # {texts[tgt_lang]} | |
``` | |
#### Limitations and bias | |
## Training data | |
Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). | |
## Eval results | |
Here are the BLEU scores: | |
model | fairseq | transformers | |
-------|---------|---------- | |
{model_name} | {scores[model_name][0]} | {scores[model_name][1]} | |
The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. | |
The score was calculated using this code: | |
```bash | |
git clone https://github.com/huggingface/transformers | |
cd transformers | |
export PAIR={pair} | |
export DATA_DIR=data/$PAIR | |
export SAVE_DIR=data/$PAIR | |
export BS=8 | |
export NUM_BEAMS=5 | |
mkdir -p $DATA_DIR | |
sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source | |
sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target | |
echo $PAIR | |
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS | |
``` | |
## Data Sources | |
- [training, etc.](http://www.statmt.org/wmt16/) | |
- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) | |
### BibTeX entry and citation info | |
``` | |
@misc{{kasai2020deep, | |
title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, | |
author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, | |
year={{2020}}, | |
eprint={{2006.10369}}, | |
archivePrefix={{arXiv}}, | |
primaryClass={{cs.CL}} | |
}} | |
``` | |
""" | |
model_card_dir.mkdir(parents=True, exist_ok=True) | |
path = os.path.join(model_card_dir, "README.md") | |
print(f"Generating {path}") | |
with open(path, "w", encoding="utf-8") as f: | |
f.write(readme) | |
# make sure we are under the root of the project | |
repo_dir = Path(__file__).resolve().parent.parent.parent | |
model_cards_dir = repo_dir / "model_cards" | |
for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: | |
model_card_dir = model_cards_dir / "allenai" / model_name | |
write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name) | |