chendl's picture
Add application file
0b7b08a
raw
history blame
36.9 kB
import functools
import logging
import math
import random
import sys
from dataclasses import dataclass
from multiprocessing import Value
import time
import os
import numpy as np
import pickle as pkl
from open_flamingo.train.instruction_template import (
VG_RELATION_TEMPLATES,
PISC_TEMPLATES,
)
import torch
import webdataset as wds
from PIL import Image
from torch.utils.data import DataLoader, IterableDataset, get_worker_info
from torch.utils.data.distributed import DistributedSampler
from webdataset.tariterators import (
base_plus_ext,
tar_file_expander,
url_opener,
valid_sample,
)
from groundingdino.demo.caption_grounder import caption_grounder
from groundingdino.demo.inference_on_laion import add_loc_to_text
from groundingdino.demo.inference_on_laion import nms_without_score
from groundingdino.demo.inference_on_laion import calculate_iou
Image.MAX_IMAGE_PIXELS = 1000000000
LAION2B_NUM_SAMPLE = 1500000000
VQAV2_TRAIN_NUM_SAMPLE = 1828467
VG_RELATION_BBOX_SIZE = 600
REL_LABELS = ['__background__', 'above', 'across', 'against', 'along', 'and', 'at', 'attached to', 'behind', 'belonging to', 'between', 'carrying', 'covered in', 'covering', 'eating', 'flying in', 'for', 'from', 'growing on', 'hanging from', 'has', 'holding', 'in', 'in front of', 'laying on', 'looking at', 'lying on', 'made of', 'mounted on', 'near', 'of', 'on', 'on back of', 'over', 'painted on', 'parked on', 'part of', 'playing', 'riding', 'says', 'sitting on', 'standing on', 'to', 'under', 'using', 'walking in', 'walking on', 'watching', 'wearing', 'wears', 'with']
try:
import horovod.torch as hvd
except ImportError:
hvd = None
class ConcatDataset(IterableDataset):
def __init__(
self, dataset, max_length,
delimiter_id, pad_id=None, media_id=None, endofmedia_id=None,
image_embedding_size=-2, single=False, box_id=None, visual_id=None,
):
self.dataset = dataset
self.max_length = max_length
self.delimiter_id = torch.ones(1,1).long() * delimiter_id
if pad_id is not None:
self.pad_id = int(pad_id)
if media_id is not None:
self.media_id = torch.ones(1,1).long() * int(media_id)
if endofmedia_id is not None:
self.endofmedia_id = torch.ones(1,1).long() * int(endofmedia_id)
if image_embedding_size > 0:
logging.info(f"image_embedding_size: {image_embedding_size}")
self.image_embedding_size = image_embedding_size + 2
self.single = single
self.box_id = box_id
self.visual_id = visual_id
def __iter__(self):
while True:
input_ids_list = []
attention_mask_list = []
image_list = []
image_start_index_list = []
added_bbox_list = []
relations_list = []
cnt = 0
while cnt < self.max_length:
sample = next(self.dataset)
if len(sample) >= 4:
image = sample[0].unsqueeze(0)
input_ids = sample[1]
attention_mask = sample[2]
added_bbox = sample[3]
image_list.append(image)
added_bbox_list.append(added_bbox)
if len(sample) == 5:
relations_list.append(sample[4])
else:
sample = sample[0]
input_ids = sample[0]
attention_mask = sample[1]
input_ids_list.append(input_ids)
attention_mask_list.append(attention_mask)
cnt += input_ids.shape[-1]
if self.single:
break
input_ids = torch.cat(input_ids_list, dim=-1)[0]
attention_mask = torch.cat(attention_mask_list, dim=-1)[0]
if not self.single:
input_ids = input_ids[:self.max_length]
attention_mask = attention_mask[:self.max_length]
# TODO: fix visual number not match
if len(image_list) != 0:
images = torch.cat(image_list, dim=0)
image_begin = (input_ids == self.media_id[0,0]).nonzero().view(-1)
image_end = (input_ids == self.endofmedia_id[0,0]).nonzero().view(-1)
if len(image_begin) != len(image_end):
assert len(image_begin) == len(image_end) + 1
input_ids[image_begin[-1]:] = self.pad_id
attention_mask[image_begin[-1]:] = 0
image_begin = image_begin[:-1]
eos_token_num = len((input_ids == self.delimiter_id[0,0]).nonzero().view(-1))
if eos_token_num != len(image_begin) + 1:
input_ids[image_begin[-1]:] = self.pad_id
attention_mask[image_begin[-1]:] = 0
image_begin = image_begin[:-1]
image_end = image_end[:-1]
images = images[:len(image_end)]
added_bbox_list = added_bbox_list[:len(image_end)]
relations_list = relations_list[:len(image_end)]
image_start_index_list = (image_begin + 1).tolist()
expand_list = added_bbox_list[0]
for x in added_bbox_list[1:]:
expand_list.extend(x)
yield images, len(images), image_start_index_list, input_ids, attention_mask, expand_list, relations_list
else:
yield input_ids, attention_mask
class SharedEpoch:
def __init__(self, epoch: int = 0):
self.shared_epoch = Value("i", epoch)
def set_value(self, epoch):
self.shared_epoch.value = epoch
def get_value(self):
return self.shared_epoch.value
@dataclass
class DataInfo:
dataloader: DataLoader
sampler: DistributedSampler = None
shared_epoch: SharedEpoch = None
def set_epoch(self, epoch):
if self.shared_epoch is not None:
self.shared_epoch.set_value(epoch)
if self.sampler is not None and isinstance(self.sampler, DistributedSampler):
self.sampler.set_epoch(epoch)
def filter_no_caption_or_no_image(sample):
return ("txt" in sample) and (
"png" in sample or "jpg" in sample or "jpeg" in sample
)
def log_and_continue(exn):
"""Call in an exception handler to ignore any exception, issue a warning, and continue."""
if "ValueError" in repr(exn) or "KeyError" in repr(exn): # Avoid spamming logs with these
return True
logging.warning(f"Handling webdataset error ({repr(exn)}). Ignoring.")
return True
# DEBUG
# log_and_continue = None
# DEBUG
def group_by_keys_nothrow(
data, keys=base_plus_ext, lcase=True, suffixes=None, handler=None
):
"""Return function over iterator that groups key, value pairs into samples.
:param keys: function that splits the key into key and extension (base_plus_ext)
:param lcase: convert suffixes to lower case (Default value = True)
"""
current_sample = None
tar_idx = None
for filesample in data:
assert isinstance(filesample, dict)
current_tar_idx = filesample["__url__"].split("/")[-1].split(".")[0]
if current_tar_idx != tar_idx:
tar_idx = current_tar_idx
if "blip2_all_data_ground" in filesample["__url__"]:
relation_data_dir = os.path.join("/gpfs/u/home/LMCG/LMCGljnn/scratch-shared/junyan/raw/blip2_all_data_relation", tar_idx)
missing_file = False
try:
data_info = pkl.load(open(os.path.join(relation_data_dir, "custom_data_info.pkl"), "rb"))
prediction = pkl.load(open(os.path.join(relation_data_dir, "custom_prediction.pkl"), "rb"))
idx_to_files = data_info["idx_to_files"]
ind_to_classes = data_info["ind_to_classes"]
ind_to_predicates = data_info["ind_to_predicates"]
files_to_idx = {x.split("#")[-1]: i for i, x in enumerate(idx_to_files)}
except:
missing_file = True
fname, value = filesample["fname"], filesample["data"]
prefix, suffix = keys(fname)
if prefix is None:
continue
if lcase:
suffix = suffix.lower()
# FIXME webdataset version throws if suffix in current_sample, but we have a potential for
# this happening in the current LAION400m dataset if a tar ends with same prefix as the next
# begins, rare, but can happen since prefix aren't unique across tar files in that dataset
if (
current_sample is None
or prefix != current_sample["__key__"]
or suffix in current_sample
):
if valid_sample(current_sample):
yield current_sample
current_sample = dict(__key__=prefix, __url__=filesample["__url__"])
if "blip2_all_data_ground" in filesample["__url__"] and not missing_file:
try:
idx = files_to_idx[prefix]
prediction[idx]["bbox"] = [np.array(bbox)/VG_RELATION_BBOX_SIZE for bbox in prediction[idx]["bbox"]]
current_sample["relation_data"] = prediction[idx]
except:
current_sample["relation_data"] = dict()
else:
current_sample["relation_data"] = dict()
if suffixes is None or suffix in suffixes:
current_sample[suffix] = value
if valid_sample(current_sample):
yield current_sample
def tarfile_to_samples_nothrow(src, handler=log_and_continue):
# NOTE this is a re-impl of the webdataset impl with group_by_keys that doesn't throw
streams = url_opener(src, handler=handler)
files = tar_file_expander(streams, handler=handler)
samples = group_by_keys_nothrow(files, handler=handler)
return samples
def pytorch_worker_seed(increment=0):
"""get dataloader worker seed from pytorch"""
worker_info = get_worker_info()
if worker_info is not None:
# favour using the seed already created for pytorch dataloader workers if it exists
seed = worker_info.seed
if increment:
# space out seed increments so they can't overlap across workers in different iterations
seed += increment * max(1, worker_info.num_workers)
return seed
# fallback to wds rank based seed
return wds.utils.pytorch_worker_seed()
_SHARD_SHUFFLE_SIZE = 2000
_SHARD_SHUFFLE_INITIAL = 500
_SAMPLE_SHUFFLE_SIZE = 5000
_SAMPLE_SHUFFLE_INITIAL = 1000
class ResampledShards2(IterableDataset):
"""An iterable dataset yielding a list of urls."""
def __init__(
self,
urls,
nshards=sys.maxsize,
worker_seed=None,
deterministic=False,
epoch=-1,
):
"""Sample shards from the shard list with replacement.
:param urls: a list of URLs as a Python list or brace notation string
"""
super().__init__()
urls = wds.shardlists.expand_urls(urls)
self.urls = urls
assert isinstance(self.urls[0], str)
self.nshards = nshards
self.rng = random.Random()
self.worker_seed = worker_seed
self.deterministic = deterministic
self.epoch = epoch
def __iter__(self):
"""Return an iterator over the shards."""
if isinstance(self.epoch, SharedEpoch):
epoch = self.epoch.get_value()
else:
# NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train)
# situation as different workers may wrap at different times (or not at all).
self.epoch += 1
epoch = self.epoch
if self.deterministic:
# reset seed w/ epoch if deterministic
if self.worker_seed is None:
# pytorch worker seed should be deterministic due to being init by arg.seed + rank + worker id
seed = pytorch_worker_seed(epoch)
else:
seed = self.worker_seed() + epoch
seed = seed + int(time.time())
self.rng.seed(seed)
# logging.info(f"epoch: {epoch} seed: {seed}")
self.rng.shuffle(self.urls)
# logging.info(f"{len(self.urls)} | {self.urls[:2]}")
for url in self.urls:
# logging.info(f"{seed}: {url}")
yield dict(url=url)
def preprocess_image(sample, image_processor):
image = image_processor(sample)
return image
def preprocess_text(sample, tokenizer, max_length, single=False):
if not single:
text = tokenizer(tokenizer.bos_token+sample.strip(), return_tensors="pt", max_length=max_length, truncation=True)
else:
text = tokenizer(tokenizer.bos_token+sample.strip(), return_tensors="pt", max_length=max_length, truncation=True, padding='max_length')
return text["input_ids"], text["attention_mask"]
def preprocess_encoded_text(sample, tokenizer, max_length):
sample = sample.decode("utf-8")
return preprocess_text(sample, tokenizer, max_length=max_length)
def _merge_bbox_previsual(added_bbox_list):
bbox_list = []
for bboxes in added_bbox_list:
x1 = bboxes[:, 0].min()
y1 = bboxes[:, 1].min()
x2 = bboxes[:, 2].max()
y2 = bboxes[:, 3].max()
bbox_list.append(torch.tensor([x1, y1, x2, y2], device=bboxes.device, dtype=bboxes.dtype).unsqueeze(0))
return bbox_list
def _find_idx(text, subtext):
loc = 0
locs = []
while text.find(subtext, loc) != -1:
loc = text.find(subtext, loc)
locs.append(loc)
loc += len(subtext)
return locs
def preprocess_ground_caption(sample, image_processor, tokenizer, image_embedding_size, generator, prob_ground=1.0, single=False, use_format_v2=False, add_visual_token=False, max_length=None, args=None):
assert max_length is not None
assert not single, "single is not supported for preprocess_ground_caption"
image, caption, logits_filt, boxes_filt, relation_data = sample
if len(logits_filt.shape) == 1 and logits_filt.shape[0] == 4 and len(boxes_filt.shape) == 1 and boxes_filt.shape[0] == 4:
raise NotImplementedError # lack relation data
return preprocess_visual_genome(sample=sample, image_processor=image_processor, tokenizer=tokenizer, image_embedding_size=image_embedding_size, prob_ground=prob_ground, single=single, use_format_v2=use_format_v2, add_visual_token=add_visual_token, max_length=max_length)
image = preprocess_image(image, image_processor=image_processor)
added_bbox = []
if (prob_ground != 0 and random.random() <= prob_ground) or prob_ground == 1.0:
boxes_filt, pred_phrases = generator.postprocess(logits_filt, boxes_filt, generator.ground_model, caption, generator.text_threshold, generator.box_threshold, with_logits=True)
caption, added_bbox = add_loc_to_text(
boxes_filt, pred_phrases, caption,
expand=args.expand, always_expand=args.longer_previsual,
)
visual_loc = []
obj_loc = []
endofobj_loc = []
visual_token = "<|#visual#|>"
previsual_token = "<|#previsual#|>"
box_token = "<|#box#|>"
prebox_token = "<|#prebox#|>"
end_token = "<|#endofobject#|>"
object_token = "<|#object#|>"
end_of_attr_token = "<|#endofattr#|>"
preend_of_attr_token = "<|#preendofattr#|>"
visual_loc = _find_idx(caption, visual_token)
try:
if len(visual_loc) != len(added_bbox):
logging.warning(f"visual_loc: {visual_loc}")
logging.warning(f"added_bbox: {added_bbox}")
except:
pass
assert len(visual_loc) == len(added_bbox)
delta = 0
for i, (loc, boxes) in enumerate(zip(visual_loc, added_bbox)):
loc += delta
boxes = nms_without_score(boxes)
added_bbox[i] = boxes
added_tokens = end_token + visual_token + box_token * len(boxes) + end_of_attr_token
caption = caption[:loc] + added_tokens + caption[len(visual_token) + loc:]
delta += len(added_tokens) - len(visual_token)
if use_format_v2:
merge_added_bbox = _merge_bbox_previsual(added_bbox)
# step 1: move <|#object#|> before the space char
while caption.find(f" {object_token}") != -1:
caption = caption.replace(f" {object_token}", f"{object_token} ")
# step 2: add <|#previsual#|> after <|#object#|> for 75% except the first object
i = 0
II = -1
if args.no_visual:
flag = False
delete_visual_prob = 10.0
else:
flag = True
delete_visual_prob = 0.75
while i < len(caption):
if caption[i: i + len(object_token)] == object_token:
II += 1
if (not args.longer_previsual and not flag and random.random() < delete_visual_prob) or (args.longer_previsual and (flag or random.random() < delete_visual_prob)):
# delete visual and add previsual
visual_start_idx = caption.find(end_token, i+1) + len(end_token)
visual_end_idx = caption.find(end_of_attr_token, visual_start_idx+1) + len(end_of_attr_token)
caption = caption[:visual_start_idx] + caption[visual_end_idx:]
caption = caption[:i + len(object_token)] + previsual_token + prebox_token + preend_of_attr_token + caption[i + len(object_token):]
added_bbox[II] = merge_added_bbox[II]
i += 1
flag = False
if args.no_previsual and args.no_visual:
caption = caption.replace(previsual_token, "").replace(prebox_token, "").replace(preend_of_attr_token, "")
added_bbox = []
caption = caption.replace(preend_of_attr_token, object_token).replace(end_of_attr_token, end_token)
if args.roi_align:
i = 0
pad_num = args.roi_output_size ** 2 - 1
while i < len(caption):
if caption[i: i + len(prebox_token)] == prebox_token:
caption = caption[:i] + tokenizer.pad_token * pad_num + caption[i:]
i += len(tokenizer.pad_token) * pad_num + len(prebox_token)
elif caption[i: i + len(box_token)] == box_token:
caption = caption[:i] + tokenizer.pad_token * pad_num + caption[i:]
i += len(tokenizer.pad_token) * pad_num + len(box_token)
i += 1
caption = f"<|#image#|>{tokenizer.pad_token*image_embedding_size}<|#endofimage#|>" + caption
input_ids, attention_mask = preprocess_text(caption, tokenizer, max_length=max_length)
relations = []
if args.only_grounded_sample and "<|#visual#|>" not in caption:
raise ValueError
return image, input_ids, attention_mask, added_bbox, relations
def preprocess_visual_genome(sample, image_processor, tokenizer, image_embedding_size, prob_ground=1.0, single=False, use_format_v2=False, add_visual_token=False, max_length=None):
assert max_length is not None
assert not single, "single is not supported for preprocess_ground_caption"
image, caption, xyxy, _ = sample
image = preprocess_image(image, image_processor=image_processor)
caption = f"<|#image#|>{tokenizer.pad_token*image_embedding_size}<|#endofimage#|><|#object#|>" + caption.strip() + "<|#endofobject#|><|#visual#|><|#box#|><|#endofattr#|>"
input_ids, attention_mask = preprocess_text(caption, tokenizer, max_length=max_length)
added_bbox = [torch.tensor(np.expand_dims(xyxy, 0).astype(np.float32) / 224)]
return image, input_ids, attention_mask, added_bbox
special_predicate = [
"and",
"has",
"says",
"wears",
]
original_predicate = {
"and": "and",
"has": "have",
"says": "say",
"wears": "wear",
}
def generate_vg_relation_sample(boxA, boxB, nameA, nameB, relation):
if relation in ["and", "of"]:
id = 0
else:
id = random.choice(range(len(VG_RELATION_TEMPLATES)))
text = VG_RELATION_TEMPLATES[id].format(nameA=nameA, nameB=nameB, relation=relation, use_is="is" if relation not in special_predicate else "", is_or_does="is" if relation not in special_predicate else "does", relation_do=relation if relation not in special_predicate else original_predicate[relation])
if id in [0]:
added_bbox = [
torch.tensor([boxA]),
torch.tensor([boxB]),
]
elif id in [1]:
added_bbox = [
torch.tensor([boxA]),
torch.tensor([boxB]),
torch.tensor([boxA]),
torch.tensor([boxB]),
]
elif id in [2]:
added_bbox = [
torch.tensor([boxA]),
torch.tensor([boxA]),
torch.tensor([boxB]),
]
elif id in [3]:
added_bbox = [
torch.tensor([boxB]),
torch.tensor([boxA]),
torch.tensor([boxB]),
]
elif id in [4]:
added_bbox = [
torch.tensor([boxA]),
torch.tensor([boxB]),
]
elif id in [5]:
added_bbox = [
torch.tensor([boxB]),
torch.tensor([boxA]),
]
else:
raise NotImplementedError
return text, added_bbox
def generate_pisc_sample(boxA, boxB, relation):
id = random.choice(range(len(PISC_TEMPLATES)))
text = PISC_TEMPLATES[id].format(relation=relation)
if id in [0]:
if random.random() < 0.5:
added_bbox = [
torch.tensor([boxA]),
torch.tensor([boxB]),
]
else:
added_bbox = [
torch.tensor([boxB]),
torch.tensor([boxA]),
]
elif id in [1]:
if random.random() < 0.5:
added_bbox = [torch.tensor([boxA, boxB])]
else:
added_bbox = [torch.tensor([boxB, boxA])]
return text, added_bbox
def preprocess_instruct(sample, image_processor, tokenizer, image_embedding_size, prob_ground=1.0, single=False, use_format_v2=False, add_visual_token=False, max_length=None):
image_path, dataset, data = sample
image = Image.open(image_path)
size = image_processor.transforms[0].size
image = image.resize((size, size))
if dataset == "pisc_relation_split":
boxA = data[0]
boxB = data[1]
relation = data[2]
text, added_bbox = generate_pisc_sample(boxA, boxB, relation)
# import cv2
# boxA *= size
# boxB *= size
# open_cv_image = np.array(image)
# open_cv_image = open_cv_image[:, :, ::-1].copy()
# open_cv_image = cv2.rectangle(open_cv_image, boxA[:2].astype(int), boxA[2:].astype(int), (255, 0, 0), 2)
# open_cv_image = cv2.rectangle(open_cv_image, boxB[:2].astype(int), boxB[2:].astype(int), (0, 255, 0), 2)
# cv2.imwrite("output.jpg", open_cv_image)
# import pdb; pdb.set_trace()
elif dataset == "vg_relation":
boxA = data[0][0]
nameA = data[0][1]
boxB = data[1][0]
nameB = data[1][1]
relation = data[2]
text, added_bbox = generate_vg_relation_sample(boxA, boxB, nameA, nameB, relation)
image = preprocess_image(image, image_processor=image_processor)
caption = f"<|#image#|>{tokenizer.pad_token*image_embedding_size}<|#endofimage#|>" + text + tokenizer.eos_token
input_ids, attention_mask = preprocess_text(caption, tokenizer, max_length=max_length, single=True)
# return image, input_ids, attention_mask, added_bbox
images = image.unsqueeze(0)
image_start_index_list = [2]
return images, len(images), image_start_index_list, input_ids, attention_mask, added_bbox
def preprocess_caption(sample, image_processor, tokenizer, image_embedding_size, max_length, single=False):
image, caption = sample
caption = f"<|#image#|>{tokenizer.pad_token*image_embedding_size}<|#endofimage#|>" + caption
image = preprocess_image(image, image_processor=image_processor)
input_ids, attention_mask = preprocess_text(caption, tokenizer, max_length=max_length, single=single)
return image, input_ids, attention_mask
def get_pile_dataset(args, image_processor, tokenizer, epoch=0, floor=False):
input_shards = args.pile_shards
assert input_shards is not None
resampled = getattr(args, "dataset_resampled", False)
assert resampled, "turn on dataset_resampled to allow infinite stream of samples"
# create a shared epoch store to sync epoch to dataloader worker proc
shared_epoch = SharedEpoch(epoch=epoch)
preprocess_text_fn = functools.partial(preprocess_encoded_text, tokenizer=tokenizer, max_length=args.max_length)
pipeline = [
ResampledShards2(input_shards, deterministic=True, epoch=shared_epoch),
tarfile_to_samples_nothrow,
wds.shuffle(
bufsize=_SAMPLE_SHUFFLE_SIZE,
initial=_SAMPLE_SHUFFLE_INITIAL,
),
wds.to_tuple("txt", handler=log_and_continue),
wds.map_tuple(
preprocess_text_fn, handler=log_and_continue
),
]
# with_epoch(sys.maxsize) will give us an infinite sample stream
dataset = wds.DataPipeline(*pipeline).with_epoch(sys.maxsize)
delimiter_id = tokenizer(tokenizer.eos_token, add_special_tokens=False)["input_ids"][-1]
dataset = ConcatDataset(iter(dataset), max_length=args.max_length, delimiter_id=delimiter_id)
def text_collate_fn(items):
try:
input_ids = torch.cat([x[0].unsqueeze(0) for x in items], dim=0)
attention_mask = torch.cat([x[1].unsqueeze(0) for x in items], dim=0)
return input_ids, attention_mask
except:
return None, None
dataloader = wds.WebLoader(
dataset,
batch_size=args.batch_size_pile,
shuffle=False,
num_workers=args.workers,
persistent_workers=False,
collate_fn=text_collate_fn,
)
return DataInfo(dataloader=dataloader, shared_epoch=shared_epoch)
# FIXME:
# modify /gpfs/u/home/LMCG/LMCGljnn/scratch/miniconda3-ppc64le/envs/unified/lib/python3.9/site-packages/webdataset/filters.py, line 433
# combine_tensors=True to combine_tensors=False
def get_ground_laion_dataset(args, image_processor, tokenizer, epoch=0, floor=False):
input_shards = args.laion_shards
assert input_shards is not None
resampled = getattr(args, "dataset_resampled", False)
assert resampled, "turn on dataset_resampled to allow infinite stream of samples"
# create a shared epoch store to sync epoch to dataloader worker proc
shared_epoch = SharedEpoch(epoch=epoch)
generator = caption_grounder(
config_file="/gpfs/u/home/LMCG/LMCGljnn/scratch/code/multimodal/GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py",
checkpoint_path="/gpfs/u/home/LMCG/LMCGljnn/scratch/code/multimodal/GroundingDINO/checkpoints/groundingdino_swint_ogc.pth",
cpu_only=True,
# box_threshold=0.5, text_threshold=0.3,
)
preprocess_ground_caption_fn = functools.partial(
preprocess_ground_caption, image_processor=image_processor, tokenizer=tokenizer,
image_embedding_size=args.vis_embed_size, single=args.single, generator=generator,
prob_ground=args.prob_ground, use_format_v2=args.use_format_v2,
add_visual_token=args.add_visual_token, max_length=args.max_length,
args=args,
)
pipeline = [
ResampledShards2(input_shards, deterministic=True, epoch=shared_epoch),
tarfile_to_samples_nothrow,
wds.shuffle(
bufsize=_SAMPLE_SHUFFLE_SIZE,
initial=_SAMPLE_SHUFFLE_INITIAL,
),
wds.select(filter_no_caption_or_no_image),
wds.decode("pilrgb", partial=True, handler=log_and_continue),
wds.to_tuple("jpg;png;jpeg", "txt", "logits.pyd", "boxes.pyd", "relation_data", handler=log_and_continue),
wds.map(
preprocess_ground_caption_fn, handler=log_and_continue
),
]
dataset = wds.DataPipeline(*pipeline).with_epoch(sys.maxsize)
# for sample in dataset:
# print(tokenizer.decode(sample[1][0]).replace("<PAD>", ""))
# DEBUG
# dataset = wds.DataPipeline(*pipeline)
# from tqdm import tqdm
# for sample in tqdm(dataset):
# nn = 0
# for x in sample[1][0]:
# if x == tokenizer("<|#object#|>", add_special_tokens=False)["input_ids"][-1]:
# nn += 1
# if x == tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1]:
# nn -= 1
# if nn not in [0, 1]:
# print(tokenizer.decode(sample[1][0]).replace("<PAD>", ""))
# import pdb; pdb.set_trace()
# if nn != 0:
# print(tokenizer.decode(sample[1][0]).replace("<PAD>", ""))
# import pdb; pdb.set_trace()
# from groundingdino.demo.inference_on_laion import OBJ_LENGTHS
# # import pdb; pdb.set_trace()
# print(sum(OBJ_LENGTHS) / len(OBJ_LENGTHS))
# exit()
# DEBUG
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
delimiter_id = tokenizer(tokenizer.eos_token, add_special_tokens=False)["input_ids"][-1]
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
box_id = tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1]
visual_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
dataset = ConcatDataset(
iter(dataset), max_length=args.max_length,
delimiter_id=delimiter_id,
pad_id=tokenizer.pad_token_id,
media_id=media_token_id,
endofmedia_id=endofmedia_token_id,
box_id=box_id,
visual_id=visual_id,
image_embedding_size=args.vis_embed_size,
single=args.single,
)
def image_collate_fn(items):
images = torch.cat([x[0] for x in items], dim=0)
image_nums = [x[1] for x in items]
image_start_index_list = [x[2] for x in items]
input_ids = torch.cat([x[3].unsqueeze(0) for x in items], dim=0)
attention_mask = torch.cat([x[4].unsqueeze(0) for x in items], dim=0)
added_bbox_list = [x[5] for x in items]
expand_list = added_bbox_list[0]
for x in added_bbox_list[1:]:
expand_list.extend(x)
relations_list = [x[6] for x in items]
return images, image_nums, image_start_index_list, input_ids, attention_mask, expand_list, relations_list
dataloader = wds.WebLoader(
dataset,
batch_size=args.batch_size_laion,
shuffle=False,
num_workers=args.workers,
persistent_workers=False,
collate_fn=image_collate_fn,
)
round_fn = math.floor if floor else math.ceil
global_batch_size = args.batch_size_laion * args.world_size
num_batches = round_fn(LAION2B_NUM_SAMPLE / global_batch_size)
dataloader.num_batches = num_batches
return DataInfo(dataloader=dataloader, shared_epoch=shared_epoch)
def get_image_text_pair_dataset(args, image_processor, tokenizer, epoch=0, floor=False):
input_shards = args.laion_shards
assert input_shards is not None
resampled = getattr(args, "dataset_resampled", False)
assert resampled, "turn on dataset_resampled to allow infinite stream of samples"
# create a shared epoch store to sync epoch to dataloader worker proc
shared_epoch = SharedEpoch(epoch=epoch)
preprocess_caption_fn = functools.partial(
preprocess_caption, image_processor=image_processor, tokenizer=tokenizer,
image_embedding_size=args.vis_embed_size, single=args.single,
max_length=args.max_length,
)
pipeline = [
ResampledShards2(input_shards, deterministic=True, epoch=shared_epoch),
tarfile_to_samples_nothrow,
wds.shuffle(
bufsize=_SAMPLE_SHUFFLE_SIZE,
initial=_SAMPLE_SHUFFLE_INITIAL,
),
wds.select(filter_no_caption_or_no_image),
wds.decode("pilrgb", handler=log_and_continue),
wds.to_tuple("jpg;png;jpeg", "txt", handler=log_and_continue),
wds.map(
preprocess_caption_fn, handler=log_and_continue
),
]
dataset = wds.DataPipeline(*pipeline).with_epoch(sys.maxsize)
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
delimiter_id = tokenizer(tokenizer.eos_token, add_special_tokens=False)["input_ids"][-1]
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
dataset = ConcatDataset(
iter(dataset), max_length=args.max_length,
delimiter_id=delimiter_id,
pad_id=tokenizer.pad_token_id,
media_id=media_token_id,
endofmedia_id=endofmedia_token_id,
image_embedding_size=args.vis_embed_size,
single=args.single,
)
def image_collate_fn(items):
images = torch.cat([x[0] for x in items], dim=0)
image_nums = [x[1] for x in items]
image_start_index_list = [x[2] for x in items]
input_ids = torch.cat([x[3].unsqueeze(0) for x in items], dim=0)
attention_mask = torch.cat([x[4].unsqueeze(0) for x in items], dim=0)
return images, image_nums, image_start_index_list, input_ids, attention_mask
dataloader = wds.WebLoader(
dataset,
batch_size=args.batch_size_laion,
shuffle=False,
num_workers=args.workers,
persistent_workers=False,
collate_fn=image_collate_fn,
)
round_fn = math.floor if floor else math.ceil
global_batch_size = args.batch_size_laion * args.world_size
num_batches = round_fn(LAION2B_NUM_SAMPLE / global_batch_size)
dataloader.num_batches = num_batches
return DataInfo(dataloader=dataloader, shared_epoch=shared_epoch)
def get_instruct_dataset(args, image_processor, tokenizer, epoch=0, floor=False):
input_shards = args.laion_shards
assert input_shards is not None
resampled = getattr(args, "dataset_resampled", False)
assert resampled, "turn on dataset_resampled to allow infinite stream of samples"
# create a shared epoch store to sync epoch to dataloader worker proc
shared_epoch = SharedEpoch(epoch=epoch)
preprocess_instruct_fn = functools.partial(
preprocess_instruct, image_processor=image_processor, tokenizer=tokenizer,
image_embedding_size=args.vis_embed_size,
max_length=args.max_length,
)
pipeline = [
ResampledShards2(input_shards, deterministic=True, epoch=shared_epoch),
tarfile_to_samples_nothrow,
wds.shuffle(
bufsize=_SAMPLE_SHUFFLE_SIZE,
initial=_SAMPLE_SHUFFLE_INITIAL,
),
wds.decode(partial=True),
wds.to_tuple("image_path.txt", "dataset.txt", "data.pyd", handler=log_and_continue),
wds.map(
preprocess_instruct_fn, handler=log_and_continue
),
]
dataset = wds.DataPipeline(*pipeline).with_epoch(sys.maxsize)
def image_collate_fn(items):
images = torch.cat([x[0] for x in items], dim=0)
image_nums = [x[1] for x in items]
image_start_index_list = [x[2] for x in items]
input_ids = torch.cat([x[3] for x in items], dim=0)
attention_mask = torch.cat([x[4] for x in items], dim=0)
added_bbox_list = [x[5] for x in items]
expand_list = added_bbox_list[0]
for x in added_bbox_list[1:]:
expand_list.extend(x)
return images, image_nums, image_start_index_list, input_ids, attention_mask, expand_list
dataloader = wds.WebLoader(
dataset,
batch_size=args.batch_size_laion,
shuffle=False,
num_workers=args.workers,
persistent_workers=False,
collate_fn=image_collate_fn,
)
round_fn = math.floor if floor else math.ceil
global_batch_size = args.batch_size_laion * args.world_size
num_batches = round_fn(LAION2B_NUM_SAMPLE / global_batch_size)
dataloader.num_batches = num_batches
return DataInfo(dataloader=dataloader, shared_epoch=shared_epoch)
def get_dataset_fn(dataset_type):
if dataset_type == "mmc4":
raise NotImplementedError
elif dataset_type == "pile":
return get_pile_dataset
elif dataset_type == "ground_image_text":
return get_ground_laion_dataset
elif dataset_type == "image_text":
return get_image_text_pair_dataset
elif dataset_type == "vqav2":
raise NotImplementedError
elif dataset_type == "instruct":
return get_instruct_dataset
else:
raise ValueError(f"Unsupported dataset type: {dataset_type}")
def get_data(args, image_processor, tokenizer, dataset_type, epoch=0):
return get_dataset_fn(dataset_type)(
args, image_processor=image_processor, epoch=epoch, tokenizer=tokenizer
)