Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch Transformer XL model evaluation script. | |
Adapted from https://github.com/kimiyoung/transformer-xl. | |
In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/eval.py | |
This script with default values evaluates a pretrained Transformer-XL on WikiText 103 | |
""" | |
import argparse | |
import logging | |
import math | |
import time | |
import torch | |
from transformers import TransfoXLCorpus, TransfoXLLMHeadModel | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO | |
) | |
logger = logging.getLogger(__name__) | |
def main(): | |
parser = argparse.ArgumentParser(description="PyTorch Transformer Language Model") | |
parser.add_argument("--model_name", type=str, default="transfo-xl-wt103", help="pretrained model name") | |
parser.add_argument( | |
"--split", type=str, default="test", choices=["all", "valid", "test"], help="which split to evaluate" | |
) | |
parser.add_argument("--batch_size", type=int, default=10, help="batch size") | |
parser.add_argument("--tgt_len", type=int, default=128, help="number of tokens to predict") | |
parser.add_argument("--ext_len", type=int, default=0, help="length of the extended context") | |
parser.add_argument("--mem_len", type=int, default=1600, help="length of the retained previous heads") | |
parser.add_argument("--clamp_len", type=int, default=1000, help="max positional embedding index") | |
parser.add_argument("--no_cuda", action="store_true", help="Do not use CUDA even though CUA is available") | |
parser.add_argument("--work_dir", type=str, required=True, help="path to the work_dir") | |
parser.add_argument("--no_log", action="store_true", help="do not log the eval result") | |
parser.add_argument("--same_length", action="store_true", help="set same length attention with masking") | |
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") | |
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") | |
args = parser.parse_args() | |
assert args.ext_len >= 0, "extended context length must be non-negative" | |
if args.server_ip and args.server_port: | |
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script | |
import ptvsd | |
print("Waiting for debugger attach") | |
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) | |
ptvsd.wait_for_attach() | |
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") | |
logger.info("device: {}".format(device)) | |
# Load a pre-processed dataset | |
# You can also build the corpus yourself using TransfoXLCorpus methods | |
# The pre-processing involve computing word frequencies to prepare the Adaptive input and SoftMax | |
# and tokenizing the dataset | |
# The pre-processed corpus is a convertion (using the conversion script ) | |
corpus = TransfoXLCorpus.from_pretrained(args.model_name) | |
va_iter = corpus.get_iterator("valid", args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len) | |
te_iter = corpus.get_iterator("test", args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len) | |
# Load a pre-trained model | |
model = TransfoXLLMHeadModel.from_pretrained(args.model_name) | |
model.to(device) | |
logger.info( | |
"Evaluating with bsz {} tgt_len {} ext_len {} mem_len {} clamp_len {}".format( | |
args.batch_size, args.tgt_len, args.ext_len, args.mem_len, args.clamp_len | |
) | |
) | |
model.reset_memory_length(args.mem_len) | |
if args.clamp_len > 0: | |
model.clamp_len = args.clamp_len | |
if args.same_length: | |
model.same_length = True | |
############################################################################### | |
# Evaluation code | |
############################################################################### | |
def evaluate(eval_iter): | |
# Turn on evaluation mode which disables dropout. | |
model.eval() | |
total_len, total_loss = 0, 0.0 | |
start_time = time.time() | |
with torch.no_grad(): | |
mems = None | |
for idx, (data, target, seq_len) in enumerate(eval_iter): | |
ret = model(data, lm_labels=target, mems=mems) | |
loss, _, mems = ret | |
loss = loss.mean() | |
total_loss += seq_len * loss.item() | |
total_len += seq_len | |
total_time = time.time() - start_time | |
logger.info("Time : {:.2f}s, {:.2f}ms/segment".format(total_time, 1000 * total_time / (idx + 1))) | |
return total_loss / total_len | |
# Run on test data. | |
if args.split == "all": | |
test_loss = evaluate(te_iter) | |
valid_loss = evaluate(va_iter) | |
elif args.split == "valid": | |
valid_loss = evaluate(va_iter) | |
test_loss = None | |
elif args.split == "test": | |
test_loss = evaluate(te_iter) | |
valid_loss = None | |
def format_log(loss, split): | |
log_str = "| {0} loss {1:5.2f} | {0} ppl {2:9.3f} ".format(split, loss, math.exp(loss)) | |
return log_str | |
log_str = "" | |
if valid_loss is not None: | |
log_str += format_log(valid_loss, "valid") | |
if test_loss is not None: | |
log_str += format_log(test_loss, "test") | |
logger.info("=" * 100) | |
logger.info(log_str) | |
logger.info("=" * 100) | |
if __name__ == "__main__": | |
main() | |