chendl's picture
add requirements
a1d409e
raw
history blame
14 kB
#!/usr/bin/env python
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seq2seq_trainer import Seq2SeqTrainer
from seq2seq_training_args import Seq2SeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeq2SeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
Seq2SeqDataCollator,
Seq2SeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
freeze_encoder: bool = field(default=False, metadata={"help": "Whether tp freeze the encoder."})
freeze_embeds: bool = field(default=False, metadata={"help": "Whether to freeze the embeddings."})
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
data_dir: str = field(
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}
)
task: Optional[str] = field(
default="summarization",
metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"},
)
max_source_length: Optional[int] = field(
default=1024,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
max_target_length: Optional[int] = field(
default=128,
metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
val_max_target_length: Optional[int] = field(
default=142,
metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. "
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
},
)
test_max_target_length: Optional[int] = field(
default=142,
metadata={
"help": (
"The maximum total sequence length for test target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
n_train: Optional[int] = field(default=-1, metadata={"help": "# training examples. -1 means use all."})
n_val: Optional[int] = field(default=-1, metadata={"help": "# validation examples. -1 means use all."})
n_test: Optional[int] = field(default=-1, metadata={"help": "# test examples. -1 means use all."})
src_lang: Optional[str] = field(default=None, metadata={"help": "Source language id for translation."})
tgt_lang: Optional[str] = field(default=None, metadata={"help": "Target language id for translation."})
eval_beams: Optional[int] = field(default=None, metadata={"help": "# num_beams to use for evaluation."})
ignore_pad_token_for_loss: bool = field(
default=True,
metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."},
)
def handle_metrics(split, metrics, output_dir):
"""
Log and save metrics
Args:
- split: one of train, val, test
- metrics: metrics dict
- output_dir: where to save the metrics
"""
logger.info(f"***** {split} metrics *****")
for key in sorted(metrics.keys()):
logger.info(f" {key} = {metrics[key]}")
save_json(metrics, os.path.join(output_dir, f"{split}_results.json"))
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
check_output_dir(training_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED),
training_args.fp16,
)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(training_args.seed)
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
for p in extra_model_params:
if getattr(training_args, p, None):
assert hasattr(config, p), f"({config.__class__.__name__}) doesn't have a `{p}` attribute"
setattr(config, p, getattr(training_args, p))
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
model = AutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
from_tf=".ckpt" in model_args.model_name_or_path,
config=config,
cache_dir=model_args.cache_dir,
)
# use task specific params
use_task_specific_params(model, data_args.task)
# set num_beams for evaluation
if data_args.eval_beams is None:
data_args.eval_beams = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(tokenizer, MBartTokenizer):
model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.tgt_lang)
if model_args.freeze_embeds:
freeze_embeds(model)
if model_args.freeze_encoder:
freeze_params(model.get_encoder())
assert_all_frozen(model.get_encoder())
dataset_class = Seq2SeqDataset
# Get datasets
train_dataset = (
dataset_class(
tokenizer,
type_path="train",
data_dir=data_args.data_dir,
n_obs=data_args.n_train,
max_target_length=data_args.max_target_length,
max_source_length=data_args.max_source_length,
prefix=model.config.prefix or "",
)
if training_args.do_train
else None
)
eval_dataset = (
dataset_class(
tokenizer,
type_path="val",
data_dir=data_args.data_dir,
n_obs=data_args.n_val,
max_target_length=data_args.val_max_target_length,
max_source_length=data_args.max_source_length,
prefix=model.config.prefix or "",
)
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
test_dataset = (
dataset_class(
tokenizer,
type_path="test",
data_dir=data_args.data_dir,
n_obs=data_args.n_test,
max_target_length=data_args.test_max_target_length,
max_source_length=data_args.max_source_length,
prefix=model.config.prefix or "",
)
if training_args.do_predict
else None
)
# Initialize our Trainer
compute_metrics_fn = (
build_compute_metrics_fn(data_args.task, tokenizer) if training_args.predict_with_generate else None
)
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
data_args=data_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=Seq2SeqDataCollator(
tokenizer, data_args, model.config.decoder_start_token_id, training_args.tpu_num_cores
),
compute_metrics=compute_metrics_fn,
tokenizer=tokenizer,
)
all_metrics = {}
# Training
if training_args.do_train:
logger.info("*** Train ***")
train_result = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
)
metrics = train_result.metrics
metrics["train_n_objs"] = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics("train", metrics, training_args.output_dir)
all_metrics.update(metrics)
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json"))
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir)
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(metric_key_prefix="val")
metrics["val_n_objs"] = data_args.n_val
metrics["val_loss"] = round(metrics["val_loss"], 4)
if trainer.is_world_process_zero():
handle_metrics("val", metrics, training_args.output_dir)
all_metrics.update(metrics)
if training_args.do_predict:
logger.info("*** Predict ***")
test_output = trainer.predict(test_dataset=test_dataset, metric_key_prefix="test")
metrics = test_output.metrics
metrics["test_n_objs"] = data_args.n_test
if trainer.is_world_process_zero():
metrics["test_loss"] = round(metrics["test_loss"], 4)
handle_metrics("test", metrics, training_args.output_dir)
all_metrics.update(metrics)
if training_args.predict_with_generate:
test_preds = tokenizer.batch_decode(
test_output.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
test_preds = lmap(str.strip, test_preds)
write_txt_file(test_preds, os.path.join(training_args.output_dir, "test_generations.txt"))
if trainer.is_world_process_zero():
save_json(all_metrics, os.path.join(training_args.output_dir, "all_results.json"))
return all_metrics
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()