Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Fill examples with bitext up to max_tokens without breaking up examples. | |
[['I went', 'yo fui'], | |
['to the store', 'a la tienda'] | |
] | |
=> ['I went to the store', 'yo fui a la tienda'] | |
""" | |
import argparse | |
import shutil | |
from pathlib import Path | |
from tqdm import tqdm | |
from transformers import AutoTokenizer | |
def pack_examples(tok, src_examples, tgt_examples, max_tokens=1024): | |
finished_src, finished_tgt = [], [] | |
sorted_examples = list(zip(src_examples, tgt_examples)) | |
new_src, new_tgt = sorted_examples[0] | |
def is_too_big(strang): | |
return tok(strang, return_tensors="pt").input_ids.shape[1] > max_tokens | |
for src, tgt in tqdm(sorted_examples[1:]): | |
cand_src = new_src + " " + src | |
cand_tgt = new_tgt + " " + tgt | |
if is_too_big(cand_src) or is_too_big(cand_tgt): # cant fit, finalize example | |
finished_src.append(new_src) | |
finished_tgt.append(new_tgt) | |
new_src, new_tgt = src, tgt | |
else: # can fit, keep adding | |
new_src, new_tgt = cand_src, cand_tgt | |
# cleanup | |
if new_src: | |
assert new_tgt | |
finished_src.append(new_src) | |
finished_tgt.append(new_tgt) | |
return finished_src, finished_tgt | |
def pack_data_dir(tok, data_dir: Path, max_tokens, save_path): | |
save_path = Path(save_path) | |
save_path.mkdir(exist_ok=True) | |
for split in ["train"]: | |
src_path, tgt_path = data_dir / f"{split}.source", data_dir / f"{split}.target" | |
src_docs = [x.rstrip() for x in Path(src_path).open().readlines()] | |
tgt_docs = [x.rstrip() for x in Path(tgt_path).open().readlines()] | |
packed_src, packed_tgt = pack_examples(tok, src_docs, tgt_docs, max_tokens) | |
print(f"packed {split} split from {len(src_docs)} examples -> {len(packed_src)}.") | |
Path(save_path / f"{split}.source").open("w").write("\n".join(packed_src)) | |
Path(save_path / f"{split}.target").open("w").write("\n".join(packed_tgt)) | |
for split in ["val", "test"]: | |
src_path, tgt_path = data_dir / f"{split}.source", data_dir / f"{split}.target" | |
shutil.copyfile(src_path, save_path / f"{split}.source") | |
shutil.copyfile(tgt_path, save_path / f"{split}.target") | |
def packer_cli(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--tok_name", type=str, help="like facebook/bart-large-cnn,t5-base, etc.") | |
parser.add_argument("--max_seq_len", type=int, default=128) | |
parser.add_argument("--data_dir", type=str) | |
parser.add_argument("--save_path", type=str) | |
args = parser.parse_args() | |
tokenizer = AutoTokenizer.from_pretrained(args.tok_name) | |
return pack_data_dir(tokenizer, Path(args.data_dir), args.max_seq_len, args.save_path) | |
if __name__ == "__main__": | |
packer_cli() | |