Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Team All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Training a CLIP like dual encoder models using text and vision encoders in the library. | |
The script can be used to train CLIP like models for languages other than English by using | |
a text encoder pre-trained in the desired language. Currently this script supports the following vision | |
and text models: | |
Vision models: ViT(https://huggingface.co/models?filter=vit), CLIP (https://huggingface.co/models?filter=clip) | |
Text models: BERT, ROBERTa (https://huggingface.co/models?filter=fill-mask) | |
""" | |
import logging | |
import os | |
import sys | |
from dataclasses import dataclass, field | |
from typing import Optional | |
import tensorflow as tf | |
from datasets import load_dataset | |
from PIL import Image | |
import transformers | |
from transformers import ( | |
AutoImageProcessor, | |
AutoTokenizer, | |
HfArgumentParser, | |
PushToHubCallback, | |
TFAutoModel, | |
TFTrainingArguments, | |
TFVisionTextDualEncoderModel, | |
create_optimizer, | |
) | |
from transformers.utils import check_min_version, send_example_telemetry | |
from transformers.utils.versions import require_version | |
logger = logging.getLogger(__name__) | |
# Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
check_min_version("4.28.0") | |
require_version( | |
"datasets>=1.8.0", "To fix: pip install -r examples/tensorflow/contrastive-image-text/requirements.txt" | |
) | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. | |
""" | |
model_name_or_path: str = field( | |
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}, default=None | |
) | |
vision_model_name_or_path: str = field( | |
metadata={"help": "Path to pretrained image model or model identifier from huggingface.co/models"}, | |
default=None, | |
) | |
text_model_name_or_path: str = field( | |
metadata={"help": "Path to pretrained text model or model identifier from huggingface.co/models"}, default=None | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
tokenizer_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
) | |
image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."}) | |
cache_dir: Optional[str] = field( | |
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} | |
) | |
model_revision: str = field( | |
default="main", | |
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
) | |
use_fast_tokenizer: bool = field( | |
default=True, | |
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | |
) | |
use_auth_token: bool = field( | |
default=False, | |
metadata={ | |
"help": ( | |
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " | |
"with private models)." | |
) | |
}, | |
) | |
freeze_vision_model: bool = field( | |
default=False, metadata={"help": "Whether to freeze the vision model parameters or not."} | |
) | |
freeze_text_model: bool = field( | |
default=False, metadata={"help": "Whether to freeze the text model parameters or not."} | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
dataset_name: Optional[str] = field( | |
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
) | |
dataset_config_name: Optional[str] = field( | |
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
) | |
data_dir: Optional[str] = field(default=None, metadata={"help": "The data directory containing input files."}) | |
image_column: Optional[str] = field( | |
default="image_path", | |
metadata={"help": "The name of the column in the datasets containing the full image file paths."}, | |
) | |
caption_column: Optional[str] = field( | |
default="caption", | |
metadata={"help": "The name of the column in the datasets containing the image captions."}, | |
) | |
train_file: Optional[str] = field( | |
default=None, metadata={"help": "The input training data file (a jsonlines file)."} | |
) | |
validation_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input evaluation data file (a jsonlines file)."}, | |
) | |
test_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input testing data file (a jsonlines file)."}, | |
) | |
max_seq_length: Optional[int] = field( | |
default=128, | |
metadata={ | |
"help": ( | |
"The maximum total input sequence length after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
) | |
}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
) | |
}, | |
) | |
max_eval_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": ( | |
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
"value if set." | |
) | |
}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=None, | |
metadata={"help": "The number of processes to use for the preprocessing."}, | |
) | |
def __post_init__(self): | |
if self.dataset_name is None and self.train_file is None and self.validation_file is None: | |
raise ValueError("Need either a dataset name or a training/validation file.") | |
else: | |
if self.train_file is not None: | |
extension = self.train_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." | |
if self.validation_file is not None: | |
extension = self.validation_file.split(".")[-1] | |
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." | |
if self.validation_file is not None: | |
extension = self.validation_file.split(".")[-1] | |
assert extension == "json", "`validation_file` should be a json file." | |
dataset_name_mapping = { | |
"image_caption_dataset.py": ("image_path", "caption"), | |
} | |
def crop_to_square(image): | |
height, width = tf.shape(image)[0], tf.shape(image)[1] | |
if height > width: | |
image = tf.image.crop_to_bounding_box(image, (height - width) // 2, 0, width, width) | |
elif width > height: | |
image = tf.image.crop_to_bounding_box(image, 0, (width - height) // 2, height, height) | |
return image | |
def load_as_tf_dataset(dataset, image_column, image_size, mean, std, batch_size, shuffle): | |
dataset = dataset.with_format("tensorflow")[:] # Load the dataset as tensor slices, but not the images yet! | |
tf_dataset = tf.data.Dataset.from_tensor_slices(dataset) | |
def load_image(sample): | |
image_path = sample[image_column] | |
image = tf.io.read_file(image_path) | |
image = tf.image.decode_image(image, channels=3, expand_animations=False) | |
image = crop_to_square(image) | |
image = tf.image.resize(image, [image_size, image_size], method="bicubic", antialias=True) | |
image = image / 255.0 | |
image = (image - mean) / std | |
image = tf.transpose(image, perm=[2, 0, 1]) # Convert to channels-first | |
sample["pixel_values"] = image | |
del sample[image_column] | |
return sample | |
if shuffle: | |
tf_dataset = tf_dataset.shuffle(len(tf_dataset)) | |
tf_dataset = tf_dataset.map(load_image, num_parallel_calls=tf.data.experimental.AUTOTUNE) | |
tf_dataset = tf_dataset.batch(batch_size, drop_remainder=shuffle) | |
tf_dataset = tf_dataset.prefetch(tf.data.experimental.AUTOTUNE) | |
return tf_dataset | |
def main(): | |
# 1. Parse input arguments | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
if model_args.model_name_or_path is not None: | |
if model_args.vision_model_name_or_path is not None or model_args.text_model_name_or_path is not None: | |
raise ValueError( | |
"If using model_name_or_path, you cannot specify separate image/text model paths as well!" | |
) | |
if model_args.vision_model_name_or_path is not None or model_args.text_model_name_or_path is not None: | |
if model_args.model_name_or_path is not None: | |
raise ValueError( | |
"If using separate image/text model paths, you cannot specify model_name_or_path as well!" | |
) | |
if not (model_args.vision_model_name_or_path is not None and model_args.text_model_name_or_path is not None): | |
raise ValueError( | |
"If using separate image/text model paths, you must specify both vision_model_name_or_path " | |
"and text_model_name_or_path!" | |
) | |
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
# information sent is the one passed as arguments along with your Python/TensorFlow versions. | |
send_example_telemetry("run_clip", model_args, data_args, framework="tensorflow") | |
# 2. Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
handlers=[logging.StreamHandler(sys.stdout)], | |
) | |
# The default of training_args.log_level is passive, so we set log level at info here to have that default. | |
transformers.utils.logging.set_verbosity_info() | |
log_level = training_args.get_process_log_level() | |
logger.setLevel(log_level) | |
transformers.utils.logging.set_verbosity(log_level) | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
# Log on each process the small summary: | |
logger.info(f"Training/evaluation parameters {training_args}") | |
# 3. Detecting last checkpoint and eventualy continue from last checkpoint | |
last_checkpoint = None | |
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: | |
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
"Use --overwrite_output_dir to overcome." | |
) | |
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: | |
logger.info( | |
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | |
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
) | |
# 4. Load dataset | |
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) | |
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
# (the dataset will be downloaded automatically from the datasets Hub). | |
# | |
# For CSV/JSON files this script will use the first column for the full image path and the second column for the | |
# captions (unless you specify column names for this with the `image_column` and `caption_column` arguments). | |
# | |
if data_args.dataset_name is not None: | |
# Downloading and loading a dataset from the hub. | |
dataset = load_dataset( | |
data_args.dataset_name, | |
data_args.dataset_config_name, | |
cache_dir=model_args.cache_dir, | |
keep_in_memory=False, | |
data_dir=data_args.data_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
else: | |
data_files = {} | |
if data_args.train_file is not None: | |
data_files["train"] = data_args.train_file | |
extension = data_args.train_file.split(".")[-1] | |
if data_args.validation_file is not None: | |
data_files["validation"] = data_args.validation_file | |
extension = data_args.validation_file.split(".")[-1] | |
if data_args.test_file is not None: | |
data_files["test"] = data_args.test_file | |
extension = data_args.test_file.split(".")[-1] | |
dataset = load_dataset( | |
extension, | |
data_files=data_files, | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
# https://huggingface.co/docs/datasets/loading_datasets.html. | |
# 5. Load pretrained model, tokenizer, and image processor | |
if model_args.tokenizer_name: | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer | |
) | |
elif model_args.model_name_or_path: | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer | |
) | |
elif model_args.text_model_name_or_path: | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.text_model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer | |
) | |
else: | |
raise ValueError( | |
"You are instantiating a new tokenizer from scratch. This is not supported by this script." | |
"You can do it from another script, save it, and load it from here, using --tokenizer_name." | |
) | |
if model_args.model_name_or_path: | |
# Load image_processor, in this script we only use this to get the mean and std for normalization. | |
image_processor = AutoImageProcessor.from_pretrained( | |
model_args.image_processor_name or model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
with training_args.strategy.scope(): | |
model = TFAutoModel.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
else: | |
# Load image_processor, in this script we only use this to get the mean and std for normalization. | |
image_processor = AutoImageProcessor.from_pretrained( | |
model_args.image_processor_name or model_args.vision_model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
revision=model_args.model_revision, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
with training_args.strategy.scope(): | |
model = TFVisionTextDualEncoderModel.from_vision_text_pretrained( | |
vision_model_name_or_path=model_args.vision_model_name_or_path, | |
text_model_name_or_path=model_args.text_model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
use_auth_token=True if model_args.use_auth_token else None, | |
) | |
config = model.config | |
if model_args.freeze_vision_model: | |
model.vision_model.trainable = False | |
if model_args.freeze_text_model: | |
model.text_model.trainable = False | |
# Preprocessing the datasets. | |
# We need to tokenize inputs and targets. | |
if training_args.do_train: | |
column_names = dataset["train"].column_names | |
elif training_args.do_eval: | |
column_names = dataset["validation"].column_names | |
elif training_args.do_predict: | |
column_names = dataset["test"].column_names | |
else: | |
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") | |
return | |
# 6. Get the column names for input/target. | |
dataset_columns = dataset_name_mapping.get(data_args.dataset_name, None) | |
if data_args.image_column is None: | |
image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] | |
else: | |
image_column = data_args.image_column | |
if image_column not in column_names: | |
raise ValueError( | |
f"--image_column' value '{data_args.image_column}' needs to be one of: {', '.join(column_names)}" | |
) | |
if data_args.caption_column is None: | |
caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] | |
else: | |
caption_column = data_args.caption_column | |
if caption_column not in column_names: | |
raise ValueError( | |
f"--caption_column' value '{data_args.caption_column}' needs to be one of: {', '.join(column_names)}" | |
) | |
# # 7. Preprocessing the datasets. | |
# We need to tokenize input captions and transform the images. | |
def tokenize_captions(examples): | |
captions = list(examples[caption_column]) | |
text_inputs = tokenizer(captions, max_length=data_args.max_seq_length, padding="max_length", truncation=True) | |
examples["input_ids"] = text_inputs.input_ids | |
examples["attention_mask"] = text_inputs.attention_mask | |
return examples | |
def filter_corrupt_images(examples): | |
"""remove problematic images""" | |
valid_images = [] | |
for image_file in examples[image_column]: | |
try: | |
Image.open(image_file) | |
valid_images.append(True) | |
except Exception: | |
valid_images.append(False) | |
return valid_images | |
if training_args.do_train: | |
if "train" not in dataset: | |
raise ValueError("--do_train requires a train dataset") | |
train_dataset = dataset["train"] | |
if data_args.max_train_samples is not None: | |
max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
train_dataset = train_dataset.select(range(max_train_samples)) | |
train_dataset = train_dataset.filter( | |
filter_corrupt_images, batched=True, num_proc=data_args.preprocessing_num_workers | |
) | |
train_dataset = train_dataset.map( | |
function=tokenize_captions, | |
batched=True, | |
remove_columns=[col for col in column_names if col != image_column], | |
num_proc=data_args.preprocessing_num_workers, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on train dataset", | |
) | |
tf_train_dataset = load_as_tf_dataset( | |
dataset=train_dataset, | |
batch_size=training_args.per_device_train_batch_size, | |
image_column=image_column, | |
image_size=config.vision_config.image_size, | |
mean=image_processor.image_mean, | |
std=image_processor.image_std, | |
shuffle=True, | |
) | |
if training_args.do_eval: | |
if "validation" not in dataset: | |
raise ValueError("--do_eval requires a train validation") | |
eval_dataset = dataset["validation"] | |
if data_args.max_eval_samples is not None: | |
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
eval_dataset = eval_dataset.filter( | |
filter_corrupt_images, batched=True, num_proc=data_args.preprocessing_num_workers | |
) | |
eval_dataset = eval_dataset.map( | |
function=tokenize_captions, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=[col for col in column_names if col != image_column], | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on validation dataset", | |
) | |
tf_eval_dataset = load_as_tf_dataset( | |
dataset=eval_dataset, | |
batch_size=training_args.per_device_eval_batch_size, | |
image_column=image_column, | |
image_size=config.vision_config.image_size, | |
mean=image_processor.image_mean, | |
std=image_processor.image_std, | |
shuffle=False, | |
) | |
# 8. Preparing push_to_hub and model card | |
push_to_hub_model_id = training_args.push_to_hub_model_id | |
if model_args.model_name_or_path is not None: | |
model_name = model_args.model_name_or_path.split("/")[-1] | |
else: | |
vision_name = model_args.vision_model_name_or_path.split("/")[-1] | |
text_name = model_args.text_model_name_or_path.split("/")[-1] | |
model_name = f"{vision_name}-{text_name}" | |
if not push_to_hub_model_id: | |
if data_args.dataset_name is not None: | |
push_to_hub_model_id = f"{model_name}-finetuned-{data_args.dataset_name}" | |
else: | |
push_to_hub_model_id = f"{model_name}-finetuned-contrastive-image-text-modeling" | |
model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "contrastive-image-text-modeling"} | |
if data_args.dataset_name is not None: | |
model_card_kwargs["dataset_tags"] = data_args.dataset_name | |
if data_args.dataset_config_name is not None: | |
model_card_kwargs["dataset_args"] = data_args.dataset_config_name | |
model_card_kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" | |
else: | |
model_card_kwargs["dataset"] = data_args.dataset_name | |
if training_args.push_to_hub: | |
callbacks = [ | |
PushToHubCallback( | |
output_dir=training_args.output_dir, | |
hub_model_id=push_to_hub_model_id, | |
hub_token=training_args.push_to_hub_token, | |
tokenizer=tokenizer, | |
**model_card_kwargs, | |
) | |
] | |
else: | |
callbacks = [] | |
# # 9. Training | |
if training_args.do_train: | |
num_train_steps = int(len(tf_train_dataset) * int(training_args.num_train_epochs)) | |
if training_args.warmup_steps > 0: | |
num_warmup_steps = training_args.warmup_steps | |
elif training_args.warmup_ratio > 0: | |
num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) | |
else: | |
num_warmup_steps = 0 | |
optimizer, lr_schedule = create_optimizer( | |
init_lr=training_args.learning_rate, | |
num_train_steps=num_train_steps, | |
num_warmup_steps=num_warmup_steps, | |
adam_beta1=training_args.adam_beta1, | |
adam_beta2=training_args.adam_beta2, | |
adam_epsilon=training_args.adam_epsilon, | |
weight_decay_rate=training_args.weight_decay, | |
adam_global_clipnorm=training_args.max_grad_norm, | |
) | |
model.compile(optimizer=optimizer, jit_compile=training_args.xla) | |
if not training_args.do_eval: | |
tf_eval_dataset = None | |
model.fit( | |
tf_train_dataset, | |
validation_data=tf_eval_dataset, | |
epochs=int(training_args.num_train_epochs), | |
callbacks=callbacks, | |
) | |
# # 10. Evaluation | |
if training_args.do_eval and not training_args.do_train: | |
model.evaluate(tf_eval_dataset) | |
if __name__ == "__main__": | |
main() | |