Spaces:
Runtime error
Runtime error
# Copyright 2021 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from huggingface_hub import hf_hub_download | |
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor | |
from transformers.pipelines import VideoClassificationPipeline, pipeline | |
from transformers.testing_utils import ( | |
is_pipeline_test, | |
nested_simplify, | |
require_decord, | |
require_tf, | |
require_torch, | |
require_torch_or_tf, | |
require_vision, | |
) | |
from .test_pipelines_common import ANY | |
class VideoClassificationPipelineTests(unittest.TestCase): | |
model_mapping = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING | |
def get_test_pipeline(self, model, tokenizer, processor): | |
example_video_filepath = hf_hub_download( | |
repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset" | |
) | |
video_classifier = VideoClassificationPipeline(model=model, image_processor=processor, top_k=2) | |
examples = [ | |
example_video_filepath, | |
"https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", | |
] | |
return video_classifier, examples | |
def run_pipeline_test(self, video_classifier, examples): | |
for example in examples: | |
outputs = video_classifier(example) | |
self.assertEqual( | |
outputs, | |
[ | |
{"score": ANY(float), "label": ANY(str)}, | |
{"score": ANY(float), "label": ANY(str)}, | |
], | |
) | |
def test_small_model_pt(self): | |
small_model = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" | |
small_feature_extractor = VideoMAEFeatureExtractor( | |
size={"shortest_edge": 10}, crop_size={"height": 10, "width": 10} | |
) | |
video_classifier = pipeline( | |
"video-classification", model=small_model, feature_extractor=small_feature_extractor, frame_sampling_rate=4 | |
) | |
video_file_path = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset") | |
outputs = video_classifier(video_file_path, top_k=2) | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], | |
) | |
outputs = video_classifier( | |
[ | |
video_file_path, | |
video_file_path, | |
], | |
top_k=2, | |
) | |
self.assertEqual( | |
nested_simplify(outputs, decimals=4), | |
[ | |
[{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], | |
[{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], | |
], | |
) | |
def test_small_model_tf(self): | |
pass | |