chendl's picture
Add application file
0b7b08a
raw
history blame
5.8 kB
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# This file comes from
# https://github.com/facebookresearch/detectron2/blob/master/detectron2/evaluation/fast_eval_api.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# Copyright (c) Megvii Inc. All rights reserved.
import copy
import time
import numpy as np
from pycocotools.cocoeval import COCOeval
from .jit_ops import FastCOCOEvalOp
class COCOeval_opt(COCOeval):
"""
This is a slightly modified version of the original COCO API, where the functions evaluateImg()
and accumulate() are implemented in C++ to speedup evaluation
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.module = FastCOCOEvalOp().load()
def evaluate(self):
"""
Run per image evaluation on given images and store results in self.evalImgs_cpp, a
datastructure that isn't readable from Python but is used by a c++ implementation of
accumulate(). Unlike the original COCO PythonAPI, we don't populate the datastructure
self.evalImgs because this datastructure is a computational bottleneck.
:return: None
"""
tic = time.time()
print("Running per image evaluation...")
p = self.params
# add backward compatibility if useSegm is specified in params
if p.useSegm is not None:
p.iouType = "segm" if p.useSegm == 1 else "bbox"
print(
"useSegm (deprecated) is not None. Running {} evaluation".format(
p.iouType
)
)
print("Evaluate annotation type *{}*".format(p.iouType))
p.imgIds = list(np.unique(p.imgIds))
if p.useCats:
p.catIds = list(np.unique(p.catIds))
p.maxDets = sorted(p.maxDets)
self.params = p
self._prepare()
# loop through images, area range, max detection number
catIds = p.catIds if p.useCats else [-1]
if p.iouType == "segm" or p.iouType == "bbox":
computeIoU = self.computeIoU
elif p.iouType == "keypoints":
computeIoU = self.computeOks
self.ious = {
(imgId, catId): computeIoU(imgId, catId)
for imgId in p.imgIds
for catId in catIds
}
maxDet = p.maxDets[-1]
# <<<< Beginning of code differences with original COCO API
def convert_instances_to_cpp(instances, is_det=False):
# Convert annotations for a list of instances in an image to a format that's fast
# to access in C++
instances_cpp = []
for instance in instances:
instance_cpp = self.module.InstanceAnnotation(
int(instance["id"]),
instance["score"] if is_det else instance.get("score", 0.0),
instance["area"],
bool(instance.get("iscrowd", 0)),
bool(instance.get("ignore", 0)),
)
instances_cpp.append(instance_cpp)
return instances_cpp
# Convert GT annotations, detections, and IOUs to a format that's fast to access in C++
ground_truth_instances = [
[convert_instances_to_cpp(self._gts[imgId, catId]) for catId in p.catIds]
for imgId in p.imgIds
]
detected_instances = [
[
convert_instances_to_cpp(self._dts[imgId, catId], is_det=True)
for catId in p.catIds
]
for imgId in p.imgIds
]
ious = [[self.ious[imgId, catId] for catId in catIds] for imgId in p.imgIds]
if not p.useCats:
# For each image, flatten per-category lists into a single list
ground_truth_instances = [
[[o for c in i for o in c]] for i in ground_truth_instances
]
detected_instances = [
[[o for c in i for o in c]] for i in detected_instances
]
# Call C++ implementation of self.evaluateImgs()
self._evalImgs_cpp = self.module.COCOevalEvaluateImages(
p.areaRng,
maxDet,
p.iouThrs,
ious,
ground_truth_instances,
detected_instances,
)
self._evalImgs = None
self._paramsEval = copy.deepcopy(self.params)
toc = time.time()
print("COCOeval_opt.evaluate() finished in {:0.2f} seconds.".format(toc - tic))
# >>>> End of code differences with original COCO API
def accumulate(self):
"""
Accumulate per image evaluation results and store the result in self.eval. Does not
support changing parameter settings from those used by self.evaluate()
"""
print("Accumulating evaluation results...")
tic = time.time()
if not hasattr(self, "_evalImgs_cpp"):
print("Please run evaluate() first")
self.eval = self.module.COCOevalAccumulate(self._paramsEval, self._evalImgs_cpp)
# recall is num_iou_thresholds X num_categories X num_area_ranges X num_max_detections
self.eval["recall"] = np.array(self.eval["recall"]).reshape(
self.eval["counts"][:1] + self.eval["counts"][2:]
)
# precision and scores are num_iou_thresholds X num_recall_thresholds X num_categories X
# num_area_ranges X num_max_detections
self.eval["precision"] = np.array(self.eval["precision"]).reshape(
self.eval["counts"]
)
self.eval["scores"] = np.array(self.eval["scores"]).reshape(self.eval["counts"])
toc = time.time()
print(
"COCOeval_opt.accumulate() finished in {:0.2f} seconds.".format(toc - tic)
)