Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
from torch import nn | |
from torch.nn import init | |
class SEAttention(nn.Module): | |
def __init__(self, channel=512,reduction=16): | |
super().__init__() | |
self.fc = nn.Sequential( | |
nn.Linear(channel, channel // reduction, bias=False), | |
nn.GELU(), | |
nn.Linear(channel // reduction, channel, bias=False), | |
nn.GELU(), | |
nn.Linear(channel, 1, bias=False), | |
nn.Sigmoid() | |
) | |
def init_weights(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
init.kaiming_normal_(m.weight, mode='fan_out') | |
if m.bias is not None: | |
init.constant_(m.bias, 0) | |
elif isinstance(m, nn.BatchNorm2d): | |
init.constant_(m.weight, 1) | |
init.constant_(m.bias, 0) | |
elif isinstance(m, nn.Linear): | |
init.normal_(m.weight, std=0.001) | |
if m.bias is not None: | |
init.constant_(m.bias, 0) | |
def forward(self, x): | |
x = self.fc(x) | |
return x | |
if __name__ == '__main__': | |
input=torch.randn(50,512,7,7) | |
se = SEAttention(channel=512,reduction=8) | |
output=se(input) | |
print(output.shape) | |