Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Team Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a clone of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import time | |
import unittest | |
from transformers import is_torch_available | |
from transformers.testing_utils import require_torch, torch_device | |
from ..test_modeling_common import ids_tensor | |
if is_torch_available(): | |
import torch | |
from transformers.generation import ( | |
MaxLengthCriteria, | |
MaxNewTokensCriteria, | |
MaxTimeCriteria, | |
StoppingCriteriaList, | |
validate_stopping_criteria, | |
) | |
class StoppingCriteriaTestCase(unittest.TestCase): | |
def _get_tensors(self, length): | |
batch_size = 3 | |
vocab_size = 250 | |
input_ids = ids_tensor((batch_size, length), vocab_size) | |
scores = torch.ones((batch_size, length), device=torch_device, dtype=torch.float) / length | |
return input_ids, scores | |
def test_list_criteria(self): | |
input_ids, scores = self._get_tensors(5) | |
criteria = StoppingCriteriaList( | |
[ | |
MaxLengthCriteria(max_length=10), | |
MaxTimeCriteria(max_time=0.1), | |
] | |
) | |
self.assertFalse(criteria(input_ids, scores)) | |
input_ids, scores = self._get_tensors(9) | |
self.assertFalse(criteria(input_ids, scores)) | |
input_ids, scores = self._get_tensors(10) | |
self.assertTrue(criteria(input_ids, scores)) | |
def test_max_length_criteria(self): | |
criteria = MaxLengthCriteria(max_length=10) | |
input_ids, scores = self._get_tensors(5) | |
self.assertFalse(criteria(input_ids, scores)) | |
input_ids, scores = self._get_tensors(9) | |
self.assertFalse(criteria(input_ids, scores)) | |
input_ids, scores = self._get_tensors(10) | |
self.assertTrue(criteria(input_ids, scores)) | |
def test_max_new_tokens_criteria(self): | |
criteria = MaxNewTokensCriteria(start_length=5, max_new_tokens=5) | |
input_ids, scores = self._get_tensors(5) | |
self.assertFalse(criteria(input_ids, scores)) | |
input_ids, scores = self._get_tensors(9) | |
self.assertFalse(criteria(input_ids, scores)) | |
input_ids, scores = self._get_tensors(10) | |
self.assertTrue(criteria(input_ids, scores)) | |
criteria_list = StoppingCriteriaList([criteria]) | |
self.assertEqual(criteria_list.max_length, 10) | |
def test_max_time_criteria(self): | |
input_ids, scores = self._get_tensors(5) | |
criteria = MaxTimeCriteria(max_time=0.1) | |
self.assertFalse(criteria(input_ids, scores)) | |
criteria = MaxTimeCriteria(max_time=0.1, initial_timestamp=time.time() - 0.2) | |
self.assertTrue(criteria(input_ids, scores)) | |
def test_validate_stopping_criteria(self): | |
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]), 10) | |
with self.assertWarns(UserWarning): | |
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]), 11) | |
stopping_criteria = validate_stopping_criteria(StoppingCriteriaList(), 11) | |
self.assertEqual(len(stopping_criteria), 1) | |