Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import shutil | |
import sys | |
import tempfile | |
import unittest | |
from pathlib import Path | |
import pytest | |
from transformers import ( | |
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, | |
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, | |
AutoTokenizer, | |
BertConfig, | |
BertTokenizer, | |
BertTokenizerFast, | |
CTRLTokenizer, | |
GPT2Tokenizer, | |
GPT2TokenizerFast, | |
PreTrainedTokenizerFast, | |
RobertaTokenizer, | |
RobertaTokenizerFast, | |
is_tokenizers_available, | |
) | |
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig | |
from transformers.models.auto.tokenization_auto import ( | |
TOKENIZER_MAPPING, | |
get_tokenizer_config, | |
tokenizer_class_from_name, | |
) | |
from transformers.models.roberta.configuration_roberta import RobertaConfig | |
from transformers.testing_utils import ( | |
DUMMY_DIFF_TOKENIZER_IDENTIFIER, | |
DUMMY_UNKNOWN_IDENTIFIER, | |
SMALL_MODEL_IDENTIFIER, | |
RequestCounter, | |
require_tokenizers, | |
slow, | |
) | |
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) | |
from test_module.custom_configuration import CustomConfig # noqa E402 | |
from test_module.custom_tokenization import CustomTokenizer # noqa E402 | |
if is_tokenizers_available(): | |
from test_module.custom_tokenization_fast import CustomTokenizerFast | |
class AutoTokenizerTest(unittest.TestCase): | |
def test_tokenizer_from_pretrained(self): | |
for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
self.assertIsNotNone(tokenizer) | |
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast)) | |
self.assertGreater(len(tokenizer), 0) | |
for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
self.assertIsNotNone(tokenizer) | |
self.assertIsInstance(tokenizer, (GPT2Tokenizer, GPT2TokenizerFast)) | |
self.assertGreater(len(tokenizer), 0) | |
def test_tokenizer_from_pretrained_identifier(self): | |
tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER) | |
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast)) | |
self.assertEqual(tokenizer.vocab_size, 12) | |
def test_tokenizer_from_model_type(self): | |
tokenizer = AutoTokenizer.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER) | |
self.assertIsInstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast)) | |
self.assertEqual(tokenizer.vocab_size, 20) | |
def test_tokenizer_from_tokenizer_class(self): | |
config = AutoConfig.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER) | |
self.assertIsInstance(config, RobertaConfig) | |
# Check that tokenizer_type ≠ model_type | |
tokenizer = AutoTokenizer.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER, config=config) | |
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast)) | |
self.assertEqual(tokenizer.vocab_size, 12) | |
def test_tokenizer_from_type(self): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
shutil.copy("./tests/fixtures/vocab.txt", os.path.join(tmp_dir, "vocab.txt")) | |
tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="bert", use_fast=False) | |
self.assertIsInstance(tokenizer, BertTokenizer) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
shutil.copy("./tests/fixtures/vocab.json", os.path.join(tmp_dir, "vocab.json")) | |
shutil.copy("./tests/fixtures/merges.txt", os.path.join(tmp_dir, "merges.txt")) | |
tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="gpt2", use_fast=False) | |
self.assertIsInstance(tokenizer, GPT2Tokenizer) | |
def test_tokenizer_from_type_fast(self): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
shutil.copy("./tests/fixtures/vocab.txt", os.path.join(tmp_dir, "vocab.txt")) | |
tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="bert") | |
self.assertIsInstance(tokenizer, BertTokenizerFast) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
shutil.copy("./tests/fixtures/vocab.json", os.path.join(tmp_dir, "vocab.json")) | |
shutil.copy("./tests/fixtures/merges.txt", os.path.join(tmp_dir, "merges.txt")) | |
tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="gpt2") | |
self.assertIsInstance(tokenizer, GPT2TokenizerFast) | |
def test_tokenizer_from_type_incorrect_name(self): | |
with pytest.raises(ValueError): | |
AutoTokenizer.from_pretrained("./", tokenizer_type="xxx") | |
def test_tokenizer_identifier_with_correct_config(self): | |
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: | |
tokenizer = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased") | |
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast)) | |
if isinstance(tokenizer, BertTokenizer): | |
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case, False) | |
else: | |
self.assertEqual(tokenizer.do_lower_case, False) | |
self.assertEqual(tokenizer.model_max_length, 512) | |
def test_tokenizer_identifier_non_existent(self): | |
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: | |
with self.assertRaisesRegex( | |
EnvironmentError, | |
"julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier", | |
): | |
_ = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists") | |
def test_model_name_edge_cases_in_mappings(self): | |
# tests: https://github.com/huggingface/transformers/pull/13251 | |
# 1. models with `-`, e.g. xlm-roberta -> xlm_roberta | |
# 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai | |
tokenizers = TOKENIZER_MAPPING.values() | |
tokenizer_names = [] | |
for slow_tok, fast_tok in tokenizers: | |
if slow_tok is not None: | |
tokenizer_names.append(slow_tok.__name__) | |
if fast_tok is not None: | |
tokenizer_names.append(fast_tok.__name__) | |
for tokenizer_name in tokenizer_names: | |
# must find the right class | |
tokenizer_class_from_name(tokenizer_name) | |
def test_from_pretrained_use_fast_toggle(self): | |
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased", use_fast=False), BertTokenizer) | |
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased"), BertTokenizerFast) | |
def test_do_lower_case(self): | |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased", do_lower_case=False) | |
sample = "Hello, world. How are you?" | |
tokens = tokenizer.tokenize(sample) | |
self.assertEqual("[UNK]", tokens[0]) | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base", do_lower_case=False) | |
tokens = tokenizer.tokenize(sample) | |
self.assertEqual("[UNK]", tokens[0]) | |
def test_PreTrainedTokenizerFast_from_pretrained(self): | |
tokenizer = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config") | |
self.assertEqual(type(tokenizer), PreTrainedTokenizerFast) | |
self.assertEqual(tokenizer.model_max_length, 512) | |
self.assertEqual(tokenizer.vocab_size, 30000) | |
self.assertEqual(tokenizer.unk_token, "[UNK]") | |
self.assertEqual(tokenizer.padding_side, "right") | |
self.assertEqual(tokenizer.truncation_side, "right") | |
def test_auto_tokenizer_from_local_folder(self): | |
tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER) | |
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast)) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
tokenizer.save_pretrained(tmp_dir) | |
tokenizer2 = AutoTokenizer.from_pretrained(tmp_dir) | |
self.assertIsInstance(tokenizer2, tokenizer.__class__) | |
self.assertEqual(tokenizer2.vocab_size, 12) | |
def test_auto_tokenizer_fast_no_slow(self): | |
tokenizer = AutoTokenizer.from_pretrained("ctrl") | |
# There is no fast CTRL so this always gives us a slow tokenizer. | |
self.assertIsInstance(tokenizer, CTRLTokenizer) | |
def test_get_tokenizer_config(self): | |
# Check we can load the tokenizer config of an online model. | |
config = get_tokenizer_config("bert-base-cased") | |
_ = config.pop("_commit_hash", None) | |
# If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. | |
self.assertEqual(config, {"do_lower_case": False}) | |
# This model does not have a tokenizer_config so we get back an empty dict. | |
config = get_tokenizer_config(SMALL_MODEL_IDENTIFIER) | |
self.assertDictEqual(config, {}) | |
# A tokenizer saved with `save_pretrained` always creates a tokenizer config. | |
tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
tokenizer.save_pretrained(tmp_dir) | |
config = get_tokenizer_config(tmp_dir) | |
# Check the class of the tokenizer was properly saved (note that it always saves the slow class). | |
self.assertEqual(config["tokenizer_class"], "BertTokenizer") | |
def test_new_tokenizer_registration(self): | |
try: | |
AutoConfig.register("custom", CustomConfig) | |
AutoTokenizer.register(CustomConfig, slow_tokenizer_class=CustomTokenizer) | |
# Trying to register something existing in the Transformers library will raise an error | |
with self.assertRaises(ValueError): | |
AutoTokenizer.register(BertConfig, slow_tokenizer_class=BertTokenizer) | |
tokenizer = CustomTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
tokenizer.save_pretrained(tmp_dir) | |
new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir) | |
self.assertIsInstance(new_tokenizer, CustomTokenizer) | |
finally: | |
if "custom" in CONFIG_MAPPING._extra_content: | |
del CONFIG_MAPPING._extra_content["custom"] | |
if CustomConfig in TOKENIZER_MAPPING._extra_content: | |
del TOKENIZER_MAPPING._extra_content[CustomConfig] | |
def test_new_tokenizer_fast_registration(self): | |
try: | |
AutoConfig.register("custom", CustomConfig) | |
# Can register in two steps | |
AutoTokenizer.register(CustomConfig, slow_tokenizer_class=CustomTokenizer) | |
self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, None)) | |
AutoTokenizer.register(CustomConfig, fast_tokenizer_class=CustomTokenizerFast) | |
self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, CustomTokenizerFast)) | |
del TOKENIZER_MAPPING._extra_content[CustomConfig] | |
# Can register in one step | |
AutoTokenizer.register( | |
CustomConfig, slow_tokenizer_class=CustomTokenizer, fast_tokenizer_class=CustomTokenizerFast | |
) | |
self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, CustomTokenizerFast)) | |
# Trying to register something existing in the Transformers library will raise an error | |
with self.assertRaises(ValueError): | |
AutoTokenizer.register(BertConfig, fast_tokenizer_class=BertTokenizerFast) | |
# We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer | |
# and that model does not have a tokenizer.json | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
bert_tokenizer = BertTokenizerFast.from_pretrained(SMALL_MODEL_IDENTIFIER) | |
bert_tokenizer.save_pretrained(tmp_dir) | |
tokenizer = CustomTokenizerFast.from_pretrained(tmp_dir) | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
tokenizer.save_pretrained(tmp_dir) | |
new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir) | |
self.assertIsInstance(new_tokenizer, CustomTokenizerFast) | |
new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir, use_fast=False) | |
self.assertIsInstance(new_tokenizer, CustomTokenizer) | |
finally: | |
if "custom" in CONFIG_MAPPING._extra_content: | |
del CONFIG_MAPPING._extra_content["custom"] | |
if CustomConfig in TOKENIZER_MAPPING._extra_content: | |
del TOKENIZER_MAPPING._extra_content[CustomConfig] | |
def test_from_pretrained_dynamic_tokenizer(self): | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=True) | |
self.assertTrue(tokenizer.special_attribute_present) | |
# Test tokenizer can be reloaded. | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
tokenizer.save_pretrained(tmp_dir) | |
reloaded_tokenizer = AutoTokenizer.from_pretrained(tmp_dir, trust_remote_code=True) | |
self.assertTrue(reloaded_tokenizer.special_attribute_present) | |
if is_tokenizers_available(): | |
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast") | |
self.assertEqual(reloaded_tokenizer.__class__.__name__, "NewTokenizerFast") | |
# Test we can also load the slow version | |
tokenizer = AutoTokenizer.from_pretrained( | |
"hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=True, use_fast=False | |
) | |
self.assertTrue(tokenizer.special_attribute_present) | |
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer") | |
# Test tokenizer can be reloaded. | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
tokenizer.save_pretrained(tmp_dir) | |
reloaded_tokenizer = AutoTokenizer.from_pretrained(tmp_dir, trust_remote_code=True, use_fast=False) | |
self.assertEqual(reloaded_tokenizer.__class__.__name__, "NewTokenizer") | |
self.assertTrue(reloaded_tokenizer.special_attribute_present) | |
else: | |
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer") | |
self.assertEqual(reloaded_tokenizer.__class__.__name__, "NewTokenizer") | |
def test_from_pretrained_dynamic_tokenizer_legacy_format(self): | |
tokenizer = AutoTokenizer.from_pretrained( | |
"hf-internal-testing/test_dynamic_tokenizer_legacy", trust_remote_code=True | |
) | |
self.assertTrue(tokenizer.special_attribute_present) | |
if is_tokenizers_available(): | |
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast") | |
# Test we can also load the slow version | |
tokenizer = AutoTokenizer.from_pretrained( | |
"hf-internal-testing/test_dynamic_tokenizer_legacy", trust_remote_code=True, use_fast=False | |
) | |
self.assertTrue(tokenizer.special_attribute_present) | |
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer") | |
else: | |
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer") | |
def test_repo_not_found(self): | |
with self.assertRaisesRegex( | |
EnvironmentError, "bert-base is not a local folder and is not a valid model identifier" | |
): | |
_ = AutoTokenizer.from_pretrained("bert-base") | |
def test_revision_not_found(self): | |
with self.assertRaisesRegex( | |
EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" | |
): | |
_ = AutoTokenizer.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa") | |
def test_cached_tokenizer_has_minimum_calls_to_head(self): | |
# Make sure we have cached the tokenizer. | |
_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert") | |
with RequestCounter() as counter: | |
_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert") | |
self.assertEqual(counter.get_request_count, 0) | |
self.assertEqual(counter.head_request_count, 1) | |
self.assertEqual(counter.other_request_count, 0) | |