compositional_test / transformers /tests /models /auto /test_tokenization_auto.py
chendl's picture
add requirements
a1d409e
raw
history blame
17.1 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
import sys
import tempfile
import unittest
from pathlib import Path
import pytest
from transformers import (
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoTokenizer,
BertConfig,
BertTokenizer,
BertTokenizerFast,
CTRLTokenizer,
GPT2Tokenizer,
GPT2TokenizerFast,
PreTrainedTokenizerFast,
RobertaTokenizer,
RobertaTokenizerFast,
is_tokenizers_available,
)
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.auto.tokenization_auto import (
TOKENIZER_MAPPING,
get_tokenizer_config,
tokenizer_class_from_name,
)
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import (
DUMMY_DIFF_TOKENIZER_IDENTIFIER,
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tokenizers,
slow,
)
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class AutoTokenizerTest(unittest.TestCase):
@slow
def test_tokenizer_from_pretrained(self):
for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x):
tokenizer = AutoTokenizer.from_pretrained(model_name)
self.assertIsNotNone(tokenizer)
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
self.assertGreater(len(tokenizer), 0)
for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys():
tokenizer = AutoTokenizer.from_pretrained(model_name)
self.assertIsNotNone(tokenizer)
self.assertIsInstance(tokenizer, (GPT2Tokenizer, GPT2TokenizerFast))
self.assertGreater(len(tokenizer), 0)
def test_tokenizer_from_pretrained_identifier(self):
tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER)
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
self.assertEqual(tokenizer.vocab_size, 12)
def test_tokenizer_from_model_type(self):
tokenizer = AutoTokenizer.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER)
self.assertIsInstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast))
self.assertEqual(tokenizer.vocab_size, 20)
def test_tokenizer_from_tokenizer_class(self):
config = AutoConfig.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER)
self.assertIsInstance(config, RobertaConfig)
# Check that tokenizer_type ≠ model_type
tokenizer = AutoTokenizer.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER, config=config)
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
self.assertEqual(tokenizer.vocab_size, 12)
def test_tokenizer_from_type(self):
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("./tests/fixtures/vocab.txt", os.path.join(tmp_dir, "vocab.txt"))
tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="bert", use_fast=False)
self.assertIsInstance(tokenizer, BertTokenizer)
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("./tests/fixtures/vocab.json", os.path.join(tmp_dir, "vocab.json"))
shutil.copy("./tests/fixtures/merges.txt", os.path.join(tmp_dir, "merges.txt"))
tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="gpt2", use_fast=False)
self.assertIsInstance(tokenizer, GPT2Tokenizer)
@require_tokenizers
def test_tokenizer_from_type_fast(self):
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("./tests/fixtures/vocab.txt", os.path.join(tmp_dir, "vocab.txt"))
tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="bert")
self.assertIsInstance(tokenizer, BertTokenizerFast)
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("./tests/fixtures/vocab.json", os.path.join(tmp_dir, "vocab.json"))
shutil.copy("./tests/fixtures/merges.txt", os.path.join(tmp_dir, "merges.txt"))
tokenizer = AutoTokenizer.from_pretrained(tmp_dir, tokenizer_type="gpt2")
self.assertIsInstance(tokenizer, GPT2TokenizerFast)
def test_tokenizer_from_type_incorrect_name(self):
with pytest.raises(ValueError):
AutoTokenizer.from_pretrained("./", tokenizer_type="xxx")
@require_tokenizers
def test_tokenizer_identifier_with_correct_config(self):
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
tokenizer = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased")
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
if isinstance(tokenizer, BertTokenizer):
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case, False)
else:
self.assertEqual(tokenizer.do_lower_case, False)
self.assertEqual(tokenizer.model_max_length, 512)
@require_tokenizers
def test_tokenizer_identifier_non_existent(self):
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
with self.assertRaisesRegex(
EnvironmentError,
"julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier",
):
_ = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists")
def test_model_name_edge_cases_in_mappings(self):
# tests: https://github.com/huggingface/transformers/pull/13251
# 1. models with `-`, e.g. xlm-roberta -> xlm_roberta
# 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai
tokenizers = TOKENIZER_MAPPING.values()
tokenizer_names = []
for slow_tok, fast_tok in tokenizers:
if slow_tok is not None:
tokenizer_names.append(slow_tok.__name__)
if fast_tok is not None:
tokenizer_names.append(fast_tok.__name__)
for tokenizer_name in tokenizer_names:
# must find the right class
tokenizer_class_from_name(tokenizer_name)
@require_tokenizers
def test_from_pretrained_use_fast_toggle(self):
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased", use_fast=False), BertTokenizer)
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased"), BertTokenizerFast)
@require_tokenizers
def test_do_lower_case(self):
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased", do_lower_case=False)
sample = "Hello, world. How are you?"
tokens = tokenizer.tokenize(sample)
self.assertEqual("[UNK]", tokens[0])
tokenizer = AutoTokenizer.from_pretrained("microsoft/mpnet-base", do_lower_case=False)
tokens = tokenizer.tokenize(sample)
self.assertEqual("[UNK]", tokens[0])
@require_tokenizers
def test_PreTrainedTokenizerFast_from_pretrained(self):
tokenizer = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config")
self.assertEqual(type(tokenizer), PreTrainedTokenizerFast)
self.assertEqual(tokenizer.model_max_length, 512)
self.assertEqual(tokenizer.vocab_size, 30000)
self.assertEqual(tokenizer.unk_token, "[UNK]")
self.assertEqual(tokenizer.padding_side, "right")
self.assertEqual(tokenizer.truncation_side, "right")
def test_auto_tokenizer_from_local_folder(self):
tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER)
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(tmp_dir)
tokenizer2 = AutoTokenizer.from_pretrained(tmp_dir)
self.assertIsInstance(tokenizer2, tokenizer.__class__)
self.assertEqual(tokenizer2.vocab_size, 12)
def test_auto_tokenizer_fast_no_slow(self):
tokenizer = AutoTokenizer.from_pretrained("ctrl")
# There is no fast CTRL so this always gives us a slow tokenizer.
self.assertIsInstance(tokenizer, CTRLTokenizer)
def test_get_tokenizer_config(self):
# Check we can load the tokenizer config of an online model.
config = get_tokenizer_config("bert-base-cased")
_ = config.pop("_commit_hash", None)
# If we ever update bert-base-cased tokenizer config, this dict here will need to be updated.
self.assertEqual(config, {"do_lower_case": False})
# This model does not have a tokenizer_config so we get back an empty dict.
config = get_tokenizer_config(SMALL_MODEL_IDENTIFIER)
self.assertDictEqual(config, {})
# A tokenizer saved with `save_pretrained` always creates a tokenizer config.
tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER)
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(tmp_dir)
config = get_tokenizer_config(tmp_dir)
# Check the class of the tokenizer was properly saved (note that it always saves the slow class).
self.assertEqual(config["tokenizer_class"], "BertTokenizer")
def test_new_tokenizer_registration(self):
try:
AutoConfig.register("custom", CustomConfig)
AutoTokenizer.register(CustomConfig, slow_tokenizer_class=CustomTokenizer)
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(ValueError):
AutoTokenizer.register(BertConfig, slow_tokenizer_class=BertTokenizer)
tokenizer = CustomTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER)
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(tmp_dir)
new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir)
self.assertIsInstance(new_tokenizer, CustomTokenizer)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
@require_tokenizers
def test_new_tokenizer_fast_registration(self):
try:
AutoConfig.register("custom", CustomConfig)
# Can register in two steps
AutoTokenizer.register(CustomConfig, slow_tokenizer_class=CustomTokenizer)
self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, None))
AutoTokenizer.register(CustomConfig, fast_tokenizer_class=CustomTokenizerFast)
self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, CustomTokenizerFast))
del TOKENIZER_MAPPING._extra_content[CustomConfig]
# Can register in one step
AutoTokenizer.register(
CustomConfig, slow_tokenizer_class=CustomTokenizer, fast_tokenizer_class=CustomTokenizerFast
)
self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, CustomTokenizerFast))
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(ValueError):
AutoTokenizer.register(BertConfig, fast_tokenizer_class=BertTokenizerFast)
# We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer
# and that model does not have a tokenizer.json
with tempfile.TemporaryDirectory() as tmp_dir:
bert_tokenizer = BertTokenizerFast.from_pretrained(SMALL_MODEL_IDENTIFIER)
bert_tokenizer.save_pretrained(tmp_dir)
tokenizer = CustomTokenizerFast.from_pretrained(tmp_dir)
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(tmp_dir)
new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir)
self.assertIsInstance(new_tokenizer, CustomTokenizerFast)
new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir, use_fast=False)
self.assertIsInstance(new_tokenizer, CustomTokenizer)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def test_from_pretrained_dynamic_tokenizer(self):
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=True)
self.assertTrue(tokenizer.special_attribute_present)
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(tmp_dir)
reloaded_tokenizer = AutoTokenizer.from_pretrained(tmp_dir, trust_remote_code=True)
self.assertTrue(reloaded_tokenizer.special_attribute_present)
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast")
self.assertEqual(reloaded_tokenizer.__class__.__name__, "NewTokenizerFast")
# Test we can also load the slow version
tokenizer = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer", trust_remote_code=True, use_fast=False
)
self.assertTrue(tokenizer.special_attribute_present)
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(tmp_dir)
reloaded_tokenizer = AutoTokenizer.from_pretrained(tmp_dir, trust_remote_code=True, use_fast=False)
self.assertEqual(reloaded_tokenizer.__class__.__name__, "NewTokenizer")
self.assertTrue(reloaded_tokenizer.special_attribute_present)
else:
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")
self.assertEqual(reloaded_tokenizer.__class__.__name__, "NewTokenizer")
def test_from_pretrained_dynamic_tokenizer_legacy_format(self):
tokenizer = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer_legacy", trust_remote_code=True
)
self.assertTrue(tokenizer.special_attribute_present)
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast")
# Test we can also load the slow version
tokenizer = AutoTokenizer.from_pretrained(
"hf-internal-testing/test_dynamic_tokenizer_legacy", trust_remote_code=True, use_fast=False
)
self.assertTrue(tokenizer.special_attribute_present)
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")
else:
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")
def test_repo_not_found(self):
with self.assertRaisesRegex(
EnvironmentError, "bert-base is not a local folder and is not a valid model identifier"
):
_ = AutoTokenizer.from_pretrained("bert-base")
def test_revision_not_found(self):
with self.assertRaisesRegex(
EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"
):
_ = AutoTokenizer.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa")
def test_cached_tokenizer_has_minimum_calls_to_head(self):
# Make sure we have cached the tokenizer.
_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert")
with RequestCounter() as counter:
_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert")
self.assertEqual(counter.get_request_count, 0)
self.assertEqual(counter.head_request_count, 1)
self.assertEqual(counter.other_request_count, 0)