chendl's picture
add requirements
a1d409e
raw
history blame
2.07 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
import torch
from transformers import CamembertModel
@require_torch
@require_sentencepiece
@require_tokenizers
class CamembertModelIntegrationTest(unittest.TestCase):
@slow
def test_output_embeds_base_model(self):
model = CamembertModel.from_pretrained("camembert-base")
model.to(torch_device)
input_ids = torch.tensor(
[[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]],
device=torch_device,
dtype=torch.long,
) # J'aime le camembert !
with torch.no_grad():
output = model(input_ids)["last_hidden_state"]
expected_shape = torch.Size((1, 10, 768))
self.assertEqual(output.shape, expected_shape)
# compare the actual values for a slice.
expected_slice = torch.tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]],
device=torch_device,
dtype=torch.float,
)
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))