Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch CLAP model. """ | |
import inspect | |
import os | |
import tempfile | |
import unittest | |
import numpy as np | |
from datasets import load_dataset | |
from transformers import ClapAudioConfig, ClapConfig, ClapProcessor, ClapTextConfig | |
from transformers.testing_utils import require_torch, slow, torch_device | |
from transformers.utils import is_torch_available | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ( | |
ModelTesterMixin, | |
_config_zero_init, | |
floats_tensor, | |
ids_tensor, | |
random_attention_mask, | |
) | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from torch import nn | |
from transformers import ( | |
ClapAudioModel, | |
ClapAudioModelWithProjection, | |
ClapModel, | |
ClapTextModel, | |
ClapTextModelWithProjection, | |
) | |
from transformers.models.clap.modeling_clap import CLAP_PRETRAINED_MODEL_ARCHIVE_LIST | |
class ClapAudioModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=12, | |
image_size=60, | |
num_mel_bins=16, | |
window_size=4, | |
spec_size=64, | |
patch_size=2, | |
patch_stride=2, | |
seq_length=16, | |
freq_ratio=2, | |
num_channels=3, | |
is_training=True, | |
hidden_size=256, | |
patch_embeds_hidden_size=32, | |
projection_dim=32, | |
num_hidden_layers=4, | |
num_heads=[2, 2, 2, 2], | |
intermediate_size=37, | |
dropout=0.1, | |
attention_dropout=0.1, | |
initializer_range=0.02, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.image_size = image_size | |
self.num_mel_bins = num_mel_bins | |
self.window_size = window_size | |
self.patch_size = patch_size | |
self.num_channels = num_channels | |
self.is_training = is_training | |
self.hidden_size = hidden_size | |
self.projection_dim = projection_dim | |
self.num_hidden_layers = num_hidden_layers | |
self.num_heads = num_heads | |
self.num_attention_heads = num_heads[0] | |
self.seq_length = seq_length | |
self.spec_size = spec_size | |
self.freq_ratio = freq_ratio | |
self.patch_stride = patch_stride | |
self.patch_embeds_hidden_size = patch_embeds_hidden_size | |
self.intermediate_size = intermediate_size | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.initializer_range = initializer_range | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
input_features = floats_tensor([self.batch_size, 1, self.hidden_size, self.num_mel_bins]) | |
config = self.get_config() | |
return config, input_features | |
def get_config(self): | |
return ClapAudioConfig( | |
image_size=self.image_size, | |
patch_size=self.patch_size, | |
num_mel_bins=self.num_mel_bins, | |
window_size=self.window_size, | |
num_channels=self.num_channels, | |
hidden_size=self.hidden_size, | |
patch_stride=self.patch_stride, | |
projection_dim=self.projection_dim, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_heads, | |
intermediate_size=self.intermediate_size, | |
dropout=self.dropout, | |
attention_dropout=self.attention_dropout, | |
initializer_range=self.initializer_range, | |
spec_size=self.spec_size, | |
freq_ratio=self.freq_ratio, | |
patch_embeds_hidden_size=self.patch_embeds_hidden_size, | |
) | |
def create_and_check_model(self, config, input_features): | |
model = ClapAudioModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
result = model(input_features) | |
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
def create_and_check_model_with_projection(self, config, input_features): | |
model = ClapAudioModelWithProjection(config=config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
result = model(input_features) | |
self.parent.assertEqual(result.audio_embeds.shape, (self.batch_size, self.projection_dim)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, input_features = config_and_inputs | |
inputs_dict = {"input_features": input_features} | |
return config, inputs_dict | |
class ClapAudioModelTest(ModelTesterMixin, unittest.TestCase): | |
""" | |
Here we also overwrite some of the tests of test_modeling_common.py, as CLAP does not use input_ids, inputs_embeds, | |
attention_mask and seq_length. | |
""" | |
all_model_classes = (ClapAudioModel, ClapAudioModelWithProjection) if is_torch_available() else () | |
fx_compatible = False | |
test_pruning = False | |
test_resize_embeddings = False | |
test_head_masking = False | |
def setUp(self): | |
self.model_tester = ClapAudioModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=ClapAudioConfig, has_text_modality=False, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_inputs_embeds(self): | |
pass | |
def test_model_common_attributes(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) | |
x = model.get_output_embeddings() | |
self.assertTrue(x is None or isinstance(x, nn.Linear)) | |
def test_hidden_states_output(self): | |
def check_hidden_states_output(inputs_dict, config, model_class): | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
hidden_states = outputs.hidden_states | |
expected_num_layers = getattr( | |
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 | |
) | |
self.assertEqual(len(hidden_states), expected_num_layers) | |
self.assertListEqual( | |
list(hidden_states[0].shape[-2:]), | |
[self.model_tester.patch_embeds_hidden_size, self.model_tester.patch_embeds_hidden_size], | |
) | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# check that output_hidden_states also work using config | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
def test_retain_grad_hidden_states_attentions(self): | |
pass | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["input_features"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_model_with_projection(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model_with_projection(*config_and_inputs) | |
def test_training(self): | |
pass | |
def test_training_gradient_checkpointing(self): | |
pass | |
def test_save_load_fast_init_from_base(self): | |
pass | |
def test_save_load_fast_init_to_base(self): | |
pass | |
def test_model_from_pretrained(self): | |
for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = ClapAudioModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
def test_model_with_projection_from_pretrained(self): | |
for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = ClapAudioModelWithProjection.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
self.assertTrue(hasattr(model, "audio_projection")) | |
class ClapTextModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=12, | |
seq_length=7, | |
is_training=True, | |
use_input_mask=True, | |
use_labels=True, | |
vocab_size=99, | |
hidden_size=32, | |
projection_dim=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
dropout=0.1, | |
attention_dropout=0.1, | |
max_position_embeddings=512, | |
initializer_range=0.02, | |
scope=None, | |
projection_hidden_act="relu", | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_input_mask = use_input_mask | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.projection_dim = projection_dim | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.max_position_embeddings = max_position_embeddings | |
self.initializer_range = initializer_range | |
self.scope = scope | |
self.projection_hidden_act = projection_hidden_act | |
def prepare_config_and_inputs(self): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
if input_mask is not None: | |
batch_size, seq_length = input_mask.shape | |
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) | |
for batch_idx, start_index in enumerate(rnd_start_indices): | |
input_mask[batch_idx, :start_index] = 1 | |
input_mask[batch_idx, start_index:] = 0 | |
config = self.get_config() | |
return config, input_ids, input_mask | |
def get_config(self): | |
return ClapTextConfig( | |
vocab_size=self.vocab_size, | |
hidden_size=self.hidden_size, | |
projection_dim=self.projection_dim, | |
num_hidden_layers=self.num_hidden_layers, | |
num_attention_heads=self.num_attention_heads, | |
intermediate_size=self.intermediate_size, | |
dropout=self.dropout, | |
attention_dropout=self.attention_dropout, | |
max_position_embeddings=self.max_position_embeddings, | |
initializer_range=self.initializer_range, | |
projection_hidden_act=self.projection_hidden_act, | |
) | |
def create_and_check_model(self, config, input_ids, input_mask): | |
model = ClapTextModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
result = model(input_ids, attention_mask=input_mask) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
def create_and_check_model_with_projection(self, config, input_ids, input_mask): | |
model = ClapTextModelWithProjection(config=config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
result = model(input_ids, attention_mask=input_mask) | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(result.text_embeds.shape, (self.batch_size, self.projection_dim)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, input_ids, input_mask = config_and_inputs | |
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} | |
return config, inputs_dict | |
class ClapTextModelTest(ModelTesterMixin, unittest.TestCase): | |
all_model_classes = (ClapTextModel, ClapTextModelWithProjection) if is_torch_available() else () | |
fx_compatible = False | |
test_pruning = False | |
test_head_masking = False | |
def setUp(self): | |
self.model_tester = ClapTextModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=ClapTextConfig, hidden_size=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_model_with_projection(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model_with_projection(*config_and_inputs) | |
def test_training(self): | |
pass | |
def test_training_gradient_checkpointing(self): | |
pass | |
def test_inputs_embeds(self): | |
pass | |
def test_save_load_fast_init_from_base(self): | |
pass | |
def test_save_load_fast_init_to_base(self): | |
pass | |
def test_model_from_pretrained(self): | |
for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = ClapTextModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
def test_model_with_projection_from_pretrained(self): | |
for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = ClapTextModelWithProjection.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
self.assertTrue(hasattr(model, "text_projection")) | |
class ClapModelTester: | |
def __init__(self, parent, text_kwargs=None, audio_kwargs=None, is_training=True): | |
if text_kwargs is None: | |
text_kwargs = {} | |
if audio_kwargs is None: | |
audio_kwargs = {} | |
self.parent = parent | |
self.text_model_tester = ClapTextModelTester(parent, **text_kwargs) | |
self.audio_model_tester = ClapAudioModelTester(parent, **audio_kwargs) | |
self.is_training = is_training | |
def prepare_config_and_inputs(self): | |
_, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() | |
_, input_features = self.audio_model_tester.prepare_config_and_inputs() | |
config = self.get_config() | |
return config, input_ids, attention_mask, input_features | |
def get_config(self): | |
return ClapConfig.from_text_audio_configs( | |
self.text_model_tester.get_config(), self.audio_model_tester.get_config(), projection_dim=64 | |
) | |
def create_and_check_model(self, config, input_ids, attention_mask, input_features): | |
model = ClapModel(config).to(torch_device).eval() | |
with torch.no_grad(): | |
result = model(input_ids, input_features, attention_mask) | |
self.parent.assertEqual( | |
result.logits_per_audio.shape, (self.audio_model_tester.batch_size, self.text_model_tester.batch_size) | |
) | |
self.parent.assertEqual( | |
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.audio_model_tester.batch_size) | |
) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, input_ids, attention_mask, input_features = config_and_inputs | |
inputs_dict = { | |
"input_ids": input_ids, | |
"attention_mask": attention_mask, | |
"input_features": input_features, | |
"return_loss": True, | |
} | |
return config, inputs_dict | |
class ClapModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (ClapModel,) if is_torch_available() else () | |
pipeline_model_mapping = {"feature-extraction": ClapModel} if is_torch_available() else {} | |
fx_compatible = False | |
test_head_masking = False | |
test_pruning = False | |
test_resize_embeddings = False | |
test_attention_outputs = False | |
def setUp(self): | |
self.model_tester = ClapModelTester(self) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_hidden_states_output(self): | |
pass | |
def test_inputs_embeds(self): | |
pass | |
def test_retain_grad_hidden_states_attentions(self): | |
pass | |
def test_model_common_attributes(self): | |
pass | |
# override as the `logit_scale` parameter initilization is different for CLAP | |
def test_initialization(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
configs_no_init = _config_zero_init(config) | |
for model_class in self.all_model_classes: | |
model = model_class(config=configs_no_init) | |
for name, param in model.named_parameters(): | |
if param.requires_grad: | |
# check if `logit_scale` is initilized as per the original implementation | |
if name == "logit_scale": | |
self.assertAlmostEqual( | |
param.data.item(), | |
np.log(1 / 0.07), | |
delta=1e-3, | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
else: | |
self.assertIn( | |
((param.data.mean() * 1e9).round() / 1e9).item(), | |
[0.0, 1.0], | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
def _create_and_check_torchscript(self, config, inputs_dict): | |
if not self.test_torchscript: | |
return | |
configs_no_init = _config_zero_init(config) # To be sure we have no Nan | |
configs_no_init.torchscript = True | |
configs_no_init.return_dict = False | |
for model_class in self.all_model_classes: | |
model = model_class(config=configs_no_init) | |
model.to(torch_device) | |
model.eval() | |
try: | |
input_ids = inputs_dict["input_ids"] | |
input_features = inputs_dict["input_features"] # CLAP needs input_features | |
traced_model = torch.jit.trace(model, (input_ids, input_features)) | |
except RuntimeError: | |
self.fail("Couldn't trace module.") | |
with tempfile.TemporaryDirectory() as tmp_dir_name: | |
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") | |
try: | |
torch.jit.save(traced_model, pt_file_name) | |
except Exception: | |
self.fail("Couldn't save module.") | |
try: | |
loaded_model = torch.jit.load(pt_file_name) | |
except Exception: | |
self.fail("Couldn't load module.") | |
model.to(torch_device) | |
model.eval() | |
loaded_model.to(torch_device) | |
loaded_model.eval() | |
model_state_dict = model.state_dict() | |
loaded_model_state_dict = loaded_model.state_dict() | |
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) | |
models_equal = True | |
for layer_name, p1 in model_state_dict.items(): | |
p2 = loaded_model_state_dict[layer_name] | |
if p1.data.ne(p2.data).sum() > 0: | |
models_equal = False | |
self.assertTrue(models_equal) | |
def test_load_audio_text_config(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
# Save ClapConfig and check if we can load ClapAudioConfig from it | |
with tempfile.TemporaryDirectory() as tmp_dir_name: | |
config.save_pretrained(tmp_dir_name) | |
audio_config = ClapAudioConfig.from_pretrained(tmp_dir_name) | |
self.assertDictEqual(config.audio_config.to_dict(), audio_config.to_dict()) | |
# Save ClapConfig and check if we can load ClapTextConfig from it | |
with tempfile.TemporaryDirectory() as tmp_dir_name: | |
config.save_pretrained(tmp_dir_name) | |
text_config = ClapTextConfig.from_pretrained(tmp_dir_name) | |
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) | |
def test_model_from_pretrained(self): | |
for model_name in CLAP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = ClapModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class ClapModelIntegrationTest(unittest.TestCase): | |
paddings = ["repeatpad", "repeat", "pad"] | |
def test_integration_unfused(self): | |
EXPECTED_MEANS_UNFUSED = { | |
"repeatpad": 0.0024, | |
"pad": 0.0020, | |
"repeat": 0.0023, | |
} | |
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
audio_sample = librispeech_dummy[-1] | |
model_id = "laion/clap-htsat-unfused" | |
model = ClapModel.from_pretrained(model_id).to(torch_device) | |
processor = ClapProcessor.from_pretrained(model_id) | |
for padding in self.paddings: | |
inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt", padding=padding).to( | |
torch_device | |
) | |
audio_embed = model.get_audio_features(**inputs) | |
expected_mean = EXPECTED_MEANS_UNFUSED[padding] | |
self.assertTrue( | |
torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3) | |
) | |
def test_integration_fused(self): | |
EXPECTED_MEANS_FUSED = { | |
"repeatpad": 0.00069, | |
"repeat": 0.00196, | |
"pad": -0.000379, | |
} | |
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
audio_sample = librispeech_dummy[-1] | |
model_id = "laion/clap-htsat-fused" | |
model = ClapModel.from_pretrained(model_id).to(torch_device) | |
processor = ClapProcessor.from_pretrained(model_id) | |
for padding in self.paddings: | |
inputs = processor( | |
audios=audio_sample["audio"]["array"], return_tensors="pt", padding=padding, truncation="fusion" | |
).to(torch_device) | |
audio_embed = model.get_audio_features(**inputs) | |
expected_mean = EXPECTED_MEANS_FUSED[padding] | |
self.assertTrue( | |
torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3) | |
) | |
def test_batched_fused(self): | |
EXPECTED_MEANS_FUSED = { | |
"repeatpad": 0.0010, | |
"repeat": 0.0020, | |
"pad": 0.0006, | |
} | |
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
audio_samples = [sample["array"] for sample in librispeech_dummy[0:4]["audio"]] | |
model_id = "laion/clap-htsat-fused" | |
model = ClapModel.from_pretrained(model_id).to(torch_device) | |
processor = ClapProcessor.from_pretrained(model_id) | |
for padding in self.paddings: | |
inputs = processor(audios=audio_samples, return_tensors="pt", padding=padding, truncation="fusion").to( | |
torch_device | |
) | |
audio_embed = model.get_audio_features(**inputs) | |
expected_mean = EXPECTED_MEANS_FUSED[padding] | |
self.assertTrue( | |
torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3) | |
) | |
def test_batched_unfused(self): | |
EXPECTED_MEANS_FUSED = { | |
"repeatpad": 0.0016, | |
"repeat": 0.0019, | |
"pad": 0.0019, | |
} | |
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
audio_samples = [sample["array"] for sample in librispeech_dummy[0:4]["audio"]] | |
model_id = "laion/clap-htsat-unfused" | |
model = ClapModel.from_pretrained(model_id).to(torch_device) | |
processor = ClapProcessor.from_pretrained(model_id) | |
for padding in self.paddings: | |
inputs = processor(audios=audio_samples, return_tensors="pt", padding=padding).to(torch_device) | |
audio_embed = model.get_audio_features(**inputs) | |
expected_mean = EXPECTED_MEANS_FUSED[padding] | |
self.assertTrue( | |
torch.allclose(audio_embed.cpu().mean(), torch.tensor([expected_mean]), atol=1e-3, rtol=1e-3) | |
) | |