Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2019 Hugging Face inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import unittest | |
from transformers import DebertaTokenizer, DebertaTokenizerFast | |
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES | |
from transformers.testing_utils import slow | |
from ...test_tokenization_common import TokenizerTesterMixin | |
class DebertaTokenizationTest(TokenizerTesterMixin, unittest.TestCase): | |
tokenizer_class = DebertaTokenizer | |
test_rust_tokenizer = True | |
rust_tokenizer_class = DebertaTokenizerFast | |
def setUp(self): | |
super().setUp() | |
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt | |
vocab = [ | |
"l", | |
"o", | |
"w", | |
"e", | |
"r", | |
"s", | |
"t", | |
"i", | |
"d", | |
"n", | |
"\u0120", | |
"\u0120l", | |
"\u0120n", | |
"\u0120lo", | |
"\u0120low", | |
"er", | |
"\u0120lowest", | |
"\u0120newer", | |
"\u0120wider", | |
"[UNK]", | |
] | |
vocab_tokens = dict(zip(vocab, range(len(vocab)))) | |
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] | |
self.special_tokens_map = {"unk_token": "[UNK]"} | |
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) | |
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) | |
with open(self.vocab_file, "w", encoding="utf-8") as fp: | |
fp.write(json.dumps(vocab_tokens) + "\n") | |
with open(self.merges_file, "w", encoding="utf-8") as fp: | |
fp.write("\n".join(merges)) | |
def get_tokenizer(self, **kwargs): | |
kwargs.update(self.special_tokens_map) | |
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) | |
def get_input_output_texts(self, tokenizer): | |
input_text = "lower newer" | |
output_text = "lower newer" | |
return input_text, output_text | |
def test_full_tokenizer(self): | |
tokenizer = self.get_tokenizer() | |
text = "lower newer" | |
bpe_tokens = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] | |
tokens = tokenizer.tokenize(text) | |
self.assertListEqual(tokens, bpe_tokens) | |
input_tokens = tokens + [tokenizer.unk_token] | |
input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] | |
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) | |
def test_token_type_ids(self): | |
tokenizer = self.get_tokenizer() | |
tokd = tokenizer("Hello", "World") | |
expected_token_type_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] | |
self.assertListEqual(tokd["token_type_ids"], expected_token_type_ids) | |
def test_sequence_builders(self): | |
tokenizer = self.tokenizer_class.from_pretrained("microsoft/deberta-base") | |
text = tokenizer.encode("sequence builders", add_special_tokens=False) | |
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) | |
encoded_text_from_decode = tokenizer.encode( | |
"sequence builders", add_special_tokens=True, add_prefix_space=False | |
) | |
encoded_pair_from_decode = tokenizer.encode( | |
"sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False | |
) | |
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) | |
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) | |
assert encoded_sentence == encoded_text_from_decode | |
assert encoded_pair == encoded_pair_from_decode | |
def test_tokenizer_integration(self): | |
tokenizer_classes = [self.tokenizer_class] | |
if self.test_rust_tokenizer: | |
tokenizer_classes.append(self.rust_tokenizer_class) | |
for tokenizer_class in tokenizer_classes: | |
tokenizer = tokenizer_class.from_pretrained("microsoft/deberta-base") | |
sequences = [ | |
"ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", | |
"ALBERT incorporates two parameter reduction techniques", | |
"The first one is a factorized embedding parameterization. By decomposing the large vocabulary" | |
" embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" | |
" vocabulary embedding.", | |
] | |
encoding = tokenizer(sequences, padding=True) | |
decoded_sequences = [tokenizer.decode(seq, skip_special_tokens=True) for seq in encoding["input_ids"]] | |
# fmt: off | |
expected_encoding = { | |
'input_ids': [ | |
[1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] | |
], | |
'token_type_ids': [ | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | |
], | |
'attention_mask': [ | |
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | |
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] | |
] | |
} | |
# fmt: on | |
expected_decoded_sequence = [ | |
"ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", | |
"ALBERT incorporates two parameter reduction techniques", | |
"The first one is a factorized embedding parameterization. By decomposing the large vocabulary" | |
" embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" | |
" vocabulary embedding.", | |
] | |
self.assertDictEqual(encoding.data, expected_encoding) | |
for expected, decoded in zip(expected_decoded_sequence, decoded_sequences): | |
self.assertEqual(expected, decoded) | |