Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch DETA model. """ | |
import inspect | |
import math | |
import unittest | |
from transformers import DetaConfig, is_torch_available, is_torchvision_available, is_vision_available | |
from transformers.file_utils import cached_property | |
from transformers.testing_utils import require_torchvision, require_vision, slow, torch_device | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
if is_torchvision_available(): | |
from transformers import DetaForObjectDetection, DetaModel | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import AutoImageProcessor | |
class DetaModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=8, | |
is_training=True, | |
use_labels=True, | |
hidden_size=256, | |
num_hidden_layers=2, | |
num_attention_heads=8, | |
intermediate_size=4, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
num_queries=12, | |
num_channels=3, | |
image_size=196, | |
n_targets=8, | |
num_labels=91, | |
num_feature_levels=4, | |
encoder_n_points=2, | |
decoder_n_points=6, | |
two_stage=False, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.is_training = is_training | |
self.use_labels = use_labels | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.num_queries = num_queries | |
self.num_channels = num_channels | |
self.image_size = image_size | |
self.n_targets = n_targets | |
self.num_labels = num_labels | |
self.num_feature_levels = num_feature_levels | |
self.encoder_n_points = encoder_n_points | |
self.decoder_n_points = decoder_n_points | |
self.two_stage = two_stage | |
# we also set the expected seq length for both encoder and decoder | |
self.encoder_seq_length = ( | |
math.ceil(self.image_size / 8) ** 2 | |
+ math.ceil(self.image_size / 16) ** 2 | |
+ math.ceil(self.image_size / 32) ** 2 | |
+ math.ceil(self.image_size / 64) ** 2 | |
) | |
self.decoder_seq_length = self.num_queries | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
pixel_mask = torch.ones([self.batch_size, self.image_size, self.image_size], device=torch_device) | |
labels = None | |
if self.use_labels: | |
# labels is a list of Dict (each Dict being the labels for a given example in the batch) | |
labels = [] | |
for i in range(self.batch_size): | |
target = {} | |
target["class_labels"] = torch.randint( | |
high=self.num_labels, size=(self.n_targets,), device=torch_device | |
) | |
target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device) | |
target["masks"] = torch.rand(self.n_targets, self.image_size, self.image_size, device=torch_device) | |
labels.append(target) | |
config = self.get_config() | |
return config, pixel_values, pixel_mask, labels | |
def get_config(self): | |
return DetaConfig( | |
d_model=self.hidden_size, | |
encoder_layers=self.num_hidden_layers, | |
decoder_layers=self.num_hidden_layers, | |
encoder_attention_heads=self.num_attention_heads, | |
decoder_attention_heads=self.num_attention_heads, | |
encoder_ffn_dim=self.intermediate_size, | |
decoder_ffn_dim=self.intermediate_size, | |
dropout=self.hidden_dropout_prob, | |
attention_dropout=self.attention_probs_dropout_prob, | |
num_queries=self.num_queries, | |
num_labels=self.num_labels, | |
num_feature_levels=self.num_feature_levels, | |
encoder_n_points=self.encoder_n_points, | |
decoder_n_points=self.decoder_n_points, | |
two_stage=self.two_stage, | |
) | |
def prepare_config_and_inputs_for_common(self): | |
config, pixel_values, pixel_mask, labels = self.prepare_config_and_inputs() | |
inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} | |
return config, inputs_dict | |
def create_and_check_deta_model(self, config, pixel_values, pixel_mask, labels): | |
model = DetaModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) | |
result = model(pixel_values) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_size)) | |
def create_and_check_deta_object_detection_head_model(self, config, pixel_values, pixel_mask, labels): | |
model = DetaForObjectDetection(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) | |
result = model(pixel_values) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels)) | |
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) | |
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels)) | |
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) | |
class DetaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (DetaModel, DetaForObjectDetection) if is_torchvision_available() else () | |
pipeline_model_mapping = ( | |
{"feature-extraction": DetaModel, "object-detection": DetaForObjectDetection} | |
if is_torchvision_available() | |
else {} | |
) | |
is_encoder_decoder = True | |
test_torchscript = False | |
test_pruning = False | |
test_head_masking = False | |
test_missing_keys = False | |
# TODO: Fix the failed tests when this model gets more usage | |
def is_pipeline_test_to_skip( | |
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name | |
): | |
if pipeline_test_casse_name == "ObjectDetectionPipelineTests": | |
return True | |
return False | |
# special case for head models | |
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) | |
if return_labels: | |
if model_class.__name__ == "DetaForObjectDetection": | |
labels = [] | |
for i in range(self.model_tester.batch_size): | |
target = {} | |
target["class_labels"] = torch.ones( | |
size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long | |
) | |
target["boxes"] = torch.ones( | |
self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float | |
) | |
target["masks"] = torch.ones( | |
self.model_tester.n_targets, | |
self.model_tester.image_size, | |
self.model_tester.image_size, | |
device=torch_device, | |
dtype=torch.float, | |
) | |
labels.append(target) | |
inputs_dict["labels"] = labels | |
return inputs_dict | |
def setUp(self): | |
self.model_tester = DetaModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=DetaConfig, has_text_modality=False) | |
def test_config(self): | |
# we don't test common_properties and arguments_init as these don't apply for DETA | |
self.config_tester.create_and_test_config_to_json_string() | |
self.config_tester.create_and_test_config_to_json_file() | |
self.config_tester.create_and_test_config_from_and_save_pretrained() | |
self.config_tester.create_and_test_config_with_num_labels() | |
self.config_tester.check_config_can_be_init_without_params() | |
def test_deta_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_deta_model(*config_and_inputs) | |
def test_deta_object_detection_head_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_deta_object_detection_head_model(*config_and_inputs) | |
def test_inputs_embeds(self): | |
pass | |
def test_model_common_attributes(self): | |
pass | |
def test_generate_without_input_ids(self): | |
pass | |
def test_resize_tokens_embeddings(self): | |
pass | |
def test_feed_forward_chunking(self): | |
pass | |
def test_attention_outputs(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
for model_class in self.all_model_classes: | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = False | |
config.return_dict = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.encoder_attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
# check that output_attentions also work using config | |
del inputs_dict["output_attentions"] | |
config.output_attentions = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.encoder_attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(attentions[0].shape[-3:]), | |
[ | |
self.model_tester.num_attention_heads, | |
self.model_tester.num_feature_levels, | |
self.model_tester.encoder_n_points, | |
], | |
) | |
out_len = len(outputs) | |
correct_outlen = 8 | |
# loss is at first position | |
if "labels" in inputs_dict: | |
correct_outlen += 1 # loss is added to beginning | |
# Object Detection model returns pred_logits and pred_boxes | |
if model_class.__name__ == "DetaForObjectDetection": | |
correct_outlen += 2 | |
self.assertEqual(out_len, correct_outlen) | |
# decoder attentions | |
decoder_attentions = outputs.decoder_attentions | |
self.assertIsInstance(decoder_attentions, (list, tuple)) | |
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(decoder_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, self.model_tester.num_queries, self.model_tester.num_queries], | |
) | |
# cross attentions | |
cross_attentions = outputs.cross_attentions | |
self.assertIsInstance(cross_attentions, (list, tuple)) | |
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(cross_attentions[0].shape[-3:]), | |
[ | |
self.model_tester.num_attention_heads, | |
self.model_tester.num_feature_levels, | |
self.model_tester.decoder_n_points, | |
], | |
) | |
# Check attention is always last and order is fine | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
if hasattr(self.model_tester, "num_hidden_states_types"): | |
added_hidden_states = self.model_tester.num_hidden_states_types | |
elif self.is_encoder_decoder: | |
added_hidden_states = 2 | |
else: | |
added_hidden_states = 1 | |
self.assertEqual(out_len + added_hidden_states, len(outputs)) | |
self_attentions = outputs.encoder_attentions | |
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(self_attentions[0].shape[-3:]), | |
[ | |
self.model_tester.num_attention_heads, | |
self.model_tester.num_feature_levels, | |
self.model_tester.encoder_n_points, | |
], | |
) | |
# removed retain_grad and grad on decoder_hidden_states, as queries don't require grad | |
def test_retain_grad_hidden_states_attentions(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.output_hidden_states = True | |
config.output_attentions = True | |
# no need to test all models as different heads yield the same functionality | |
model_class = self.all_model_classes[0] | |
model = model_class(config) | |
model.to(torch_device) | |
inputs = self._prepare_for_class(inputs_dict, model_class) | |
outputs = model(**inputs) | |
# we take the second output since last_hidden_state is the second item | |
output = outputs[1] | |
encoder_hidden_states = outputs.encoder_hidden_states[0] | |
encoder_attentions = outputs.encoder_attentions[0] | |
encoder_hidden_states.retain_grad() | |
encoder_attentions.retain_grad() | |
decoder_attentions = outputs.decoder_attentions[0] | |
decoder_attentions.retain_grad() | |
cross_attentions = outputs.cross_attentions[0] | |
cross_attentions.retain_grad() | |
output.flatten()[0].backward(retain_graph=True) | |
self.assertIsNotNone(encoder_hidden_states.grad) | |
self.assertIsNotNone(encoder_attentions.grad) | |
self.assertIsNotNone(decoder_attentions.grad) | |
self.assertIsNotNone(cross_attentions.grad) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
if model.config.is_encoder_decoder: | |
expected_arg_names = ["pixel_values", "pixel_mask"] | |
expected_arg_names.extend( | |
["head_mask", "decoder_head_mask", "encoder_outputs"] | |
if "head_mask" and "decoder_head_mask" in arg_names | |
else [] | |
) | |
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) | |
else: | |
expected_arg_names = ["pixel_values", "pixel_mask"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_tied_model_weights_key_ignore(self): | |
pass | |
def test_initialization(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
configs_no_init = _config_zero_init(config) | |
for model_class in self.all_model_classes: | |
model = model_class(config=configs_no_init) | |
# Skip the check for the backbone | |
for name, module in model.named_modules(): | |
if module.__class__.__name__ == "DetaBackboneWithPositionalEncodings": | |
backbone_params = [f"{name}.{key}" for key in module.state_dict().keys()] | |
break | |
for name, param in model.named_parameters(): | |
if param.requires_grad: | |
if ( | |
"level_embed" in name | |
or "sampling_offsets.bias" in name | |
or "value_proj" in name | |
or "output_proj" in name | |
or "reference_points" in name | |
or name in backbone_params | |
): | |
continue | |
self.assertIn( | |
((param.data.mean() * 1e9).round() / 1e9).item(), | |
[0.0, 1.0], | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
TOLERANCE = 1e-4 | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
return image | |
class DetaModelIntegrationTests(unittest.TestCase): | |
def default_image_processor(self): | |
return AutoImageProcessor.from_pretrained("jozhang97/deta-resnet-50") if is_vision_available() else None | |
def test_inference_object_detection_head(self): | |
model = DetaForObjectDetection.from_pretrained("jozhang97/deta-resnet-50").to(torch_device) | |
image_processor = self.default_image_processor | |
image = prepare_img() | |
inputs = image_processor(images=image, return_tensors="pt").to(torch_device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
expected_shape_logits = torch.Size((1, 300, model.config.num_labels)) | |
self.assertEqual(outputs.logits.shape, expected_shape_logits) | |
expected_logits = torch.tensor( | |
[[-7.3978, -2.5406, -4.1668], [-8.2684, -3.9933, -3.8096], [-7.0515, -3.7973, -5.8516]] | |
).to(torch_device) | |
expected_boxes = torch.tensor( | |
[[0.5043, 0.4973, 0.9998], [0.2542, 0.5489, 0.4748], [0.5490, 0.2765, 0.0570]] | |
).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-4)) | |
expected_shape_boxes = torch.Size((1, 300, 4)) | |
self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes) | |
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-4)) | |
# verify postprocessing | |
results = image_processor.post_process_object_detection( | |
outputs, threshold=0.3, target_sizes=[image.size[::-1]] | |
)[0] | |
expected_scores = torch.tensor([0.6392, 0.6276, 0.5546, 0.5260, 0.4706], device=torch_device) | |
expected_labels = [75, 17, 17, 75, 63] | |
expected_slice_boxes = torch.tensor([40.5866, 73.2107, 176.1421, 117.1751], device=torch_device) | |
self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4)) | |
self.assertSequenceEqual(results["labels"].tolist(), expected_labels) | |
self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes)) | |
def test_inference_object_detection_head_swin_backbone(self): | |
model = DetaForObjectDetection.from_pretrained("jozhang97/deta-swin-large").to(torch_device) | |
image_processor = self.default_image_processor | |
image = prepare_img() | |
inputs = image_processor(images=image, return_tensors="pt").to(torch_device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
expected_shape_logits = torch.Size((1, 300, model.config.num_labels)) | |
self.assertEqual(outputs.logits.shape, expected_shape_logits) | |
expected_logits = torch.tensor( | |
[[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] | |
).to(torch_device) | |
expected_boxes = torch.tensor( | |
[[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] | |
).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-4)) | |
expected_shape_boxes = torch.Size((1, 300, 4)) | |
self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes) | |
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-4)) | |
# verify postprocessing | |
results = image_processor.post_process_object_detection( | |
outputs, threshold=0.3, target_sizes=[image.size[::-1]] | |
)[0] | |
expected_scores = torch.tensor([0.6831, 0.6826, 0.5684, 0.5464, 0.4392], device=torch_device) | |
expected_labels = [17, 17, 75, 75, 63] | |
expected_slice_boxes = torch.tensor([345.8478, 23.6754, 639.8562, 372.8265], device=torch_device) | |
self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4)) | |
self.assertSequenceEqual(results["labels"].tolist(), expected_labels) | |
self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes)) | |