Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch DETR model. """ | |
import inspect | |
import math | |
import unittest | |
from transformers import DetrConfig, is_timm_available, is_vision_available | |
from transformers.testing_utils import require_timm, require_torch, require_vision, slow, torch_device | |
from transformers.utils import cached_property | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_timm_available(): | |
import torch | |
from transformers import DetrForObjectDetection, DetrForSegmentation, DetrModel, ResNetConfig | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import DetrFeatureExtractor | |
class DetrModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=8, | |
is_training=True, | |
use_labels=True, | |
hidden_size=256, | |
num_hidden_layers=2, | |
num_attention_heads=8, | |
intermediate_size=4, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
num_queries=12, | |
num_channels=3, | |
min_size=200, | |
max_size=200, | |
n_targets=8, | |
num_labels=91, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.is_training = is_training | |
self.use_labels = use_labels | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.num_queries = num_queries | |
self.num_channels = num_channels | |
self.min_size = min_size | |
self.max_size = max_size | |
self.n_targets = n_targets | |
self.num_labels = num_labels | |
# we also set the expected seq length for both encoder and decoder | |
self.encoder_seq_length = math.ceil(self.min_size / 32) * math.ceil(self.max_size / 32) | |
self.decoder_seq_length = self.num_queries | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]) | |
pixel_mask = torch.ones([self.batch_size, self.min_size, self.max_size], device=torch_device) | |
labels = None | |
if self.use_labels: | |
# labels is a list of Dict (each Dict being the labels for a given example in the batch) | |
labels = [] | |
for i in range(self.batch_size): | |
target = {} | |
target["class_labels"] = torch.randint( | |
high=self.num_labels, size=(self.n_targets,), device=torch_device | |
) | |
target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device) | |
target["masks"] = torch.rand(self.n_targets, self.min_size, self.max_size, device=torch_device) | |
labels.append(target) | |
config = self.get_config() | |
return config, pixel_values, pixel_mask, labels | |
def get_config(self): | |
return DetrConfig( | |
d_model=self.hidden_size, | |
encoder_layers=self.num_hidden_layers, | |
decoder_layers=self.num_hidden_layers, | |
encoder_attention_heads=self.num_attention_heads, | |
decoder_attention_heads=self.num_attention_heads, | |
encoder_ffn_dim=self.intermediate_size, | |
decoder_ffn_dim=self.intermediate_size, | |
dropout=self.hidden_dropout_prob, | |
attention_dropout=self.attention_probs_dropout_prob, | |
num_queries=self.num_queries, | |
num_labels=self.num_labels, | |
) | |
def prepare_config_and_inputs_for_common(self): | |
config, pixel_values, pixel_mask, labels = self.prepare_config_and_inputs() | |
inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} | |
return config, inputs_dict | |
def create_and_check_detr_model(self, config, pixel_values, pixel_mask, labels): | |
model = DetrModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) | |
result = model(pixel_values) | |
self.parent.assertEqual( | |
result.last_hidden_state.shape, (self.batch_size, self.decoder_seq_length, self.hidden_size) | |
) | |
def create_and_check_detr_object_detection_head_model(self, config, pixel_values, pixel_mask, labels): | |
model = DetrForObjectDetection(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) | |
result = model(pixel_values) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)) | |
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) | |
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)) | |
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) | |
def create_and_check_no_timm_backbone(self, config, pixel_values, pixel_mask, labels): | |
config.use_timm_backbone = False | |
config.backbone_config = ResNetConfig() | |
model = DetrForObjectDetection(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) | |
result = model(pixel_values) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)) | |
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) | |
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)) | |
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) | |
class DetrModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
DetrModel, | |
DetrForObjectDetection, | |
DetrForSegmentation, | |
) | |
if is_timm_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": DetrModel, | |
"image-segmentation": DetrForSegmentation, | |
"object-detection": DetrForObjectDetection, | |
} | |
if is_timm_available() | |
else {} | |
) | |
is_encoder_decoder = True | |
test_torchscript = False | |
test_pruning = False | |
test_head_masking = False | |
test_missing_keys = False | |
# special case for head models | |
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) | |
if return_labels: | |
if model_class.__name__ in ["DetrForObjectDetection", "DetrForSegmentation"]: | |
labels = [] | |
for i in range(self.model_tester.batch_size): | |
target = {} | |
target["class_labels"] = torch.ones( | |
size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long | |
) | |
target["boxes"] = torch.ones( | |
self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float | |
) | |
target["masks"] = torch.ones( | |
self.model_tester.n_targets, | |
self.model_tester.min_size, | |
self.model_tester.max_size, | |
device=torch_device, | |
dtype=torch.float, | |
) | |
labels.append(target) | |
inputs_dict["labels"] = labels | |
return inputs_dict | |
def setUp(self): | |
self.model_tester = DetrModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=DetrConfig, has_text_modality=False) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_detr_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_detr_model(*config_and_inputs) | |
def test_detr_object_detection_head_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_detr_object_detection_head_model(*config_and_inputs) | |
def test_detr_no_timm_backbone(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_no_timm_backbone(*config_and_inputs) | |
# TODO: check if this works again for PyTorch 2.x.y | |
def test_multi_gpu_data_parallel_forward(self): | |
pass | |
def test_inputs_embeds(self): | |
pass | |
def test_model_common_attributes(self): | |
pass | |
def test_generate_without_input_ids(self): | |
pass | |
def test_resize_tokens_embeddings(self): | |
pass | |
def test_model_outputs_equivalence(self): | |
# TODO Niels: fix me! | |
pass | |
def test_attention_outputs(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
decoder_seq_length = self.model_tester.decoder_seq_length | |
encoder_seq_length = self.model_tester.encoder_seq_length | |
decoder_key_length = self.model_tester.decoder_seq_length | |
encoder_key_length = self.model_tester.encoder_seq_length | |
for model_class in self.all_model_classes: | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = False | |
config.return_dict = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
# check that output_attentions also work using config | |
del inputs_dict["output_attentions"] | |
config.output_attentions = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], | |
) | |
out_len = len(outputs) | |
if self.is_encoder_decoder: | |
correct_outlen = 5 | |
# loss is at first position | |
if "labels" in inputs_dict: | |
correct_outlen += 1 # loss is added to beginning | |
# Object Detection model returns pred_logits and pred_boxes | |
if model_class.__name__ == "DetrForObjectDetection": | |
correct_outlen += 2 | |
# Panoptic Segmentation model returns pred_logits, pred_boxes, pred_masks | |
if model_class.__name__ == "DetrForSegmentation": | |
correct_outlen += 3 | |
if "past_key_values" in outputs: | |
correct_outlen += 1 # past_key_values have been returned | |
self.assertEqual(out_len, correct_outlen) | |
# decoder attentions | |
decoder_attentions = outputs.decoder_attentions | |
self.assertIsInstance(decoder_attentions, (list, tuple)) | |
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(decoder_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], | |
) | |
# cross attentions | |
cross_attentions = outputs.cross_attentions | |
self.assertIsInstance(cross_attentions, (list, tuple)) | |
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(cross_attentions[0].shape[-3:]), | |
[ | |
self.model_tester.num_attention_heads, | |
decoder_seq_length, | |
encoder_key_length, | |
], | |
) | |
# Check attention is always last and order is fine | |
inputs_dict["output_attentions"] = True | |
inputs_dict["output_hidden_states"] = True | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
if hasattr(self.model_tester, "num_hidden_states_types"): | |
added_hidden_states = self.model_tester.num_hidden_states_types | |
elif self.is_encoder_decoder: | |
added_hidden_states = 2 | |
else: | |
added_hidden_states = 1 | |
self.assertEqual(out_len + added_hidden_states, len(outputs)) | |
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions | |
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(self_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], | |
) | |
def test_retain_grad_hidden_states_attentions(self): | |
# removed retain_grad and grad on decoder_hidden_states, as queries don't require grad | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.output_hidden_states = True | |
config.output_attentions = True | |
# no need to test all models as different heads yield the same functionality | |
model_class = self.all_model_classes[0] | |
model = model_class(config) | |
model.to(torch_device) | |
inputs = self._prepare_for_class(inputs_dict, model_class) | |
outputs = model(**inputs) | |
output = outputs[0] | |
encoder_hidden_states = outputs.encoder_hidden_states[0] | |
encoder_attentions = outputs.encoder_attentions[0] | |
encoder_hidden_states.retain_grad() | |
encoder_attentions.retain_grad() | |
decoder_attentions = outputs.decoder_attentions[0] | |
decoder_attentions.retain_grad() | |
cross_attentions = outputs.cross_attentions[0] | |
cross_attentions.retain_grad() | |
output.flatten()[0].backward(retain_graph=True) | |
self.assertIsNotNone(encoder_hidden_states.grad) | |
self.assertIsNotNone(encoder_attentions.grad) | |
self.assertIsNotNone(decoder_attentions.grad) | |
self.assertIsNotNone(cross_attentions.grad) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
if model.config.is_encoder_decoder: | |
expected_arg_names = ["pixel_values", "pixel_mask"] | |
expected_arg_names.extend( | |
["head_mask", "decoder_head_mask", "encoder_outputs"] | |
if "head_mask" and "decoder_head_mask" in arg_names | |
else [] | |
) | |
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) | |
else: | |
expected_arg_names = ["pixel_values", "pixel_mask"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_different_timm_backbone(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
# let's pick a random timm backbone | |
config.backbone = "tf_mobilenetv3_small_075" | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
if model_class.__name__ == "DetrForObjectDetection": | |
expected_shape = ( | |
self.model_tester.batch_size, | |
self.model_tester.num_queries, | |
self.model_tester.num_labels + 1, | |
) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
self.assertTrue(outputs) | |
def test_greyscale_images(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
# use greyscale pixel values | |
inputs_dict["pixel_values"] = floats_tensor( | |
[self.model_tester.batch_size, 1, self.model_tester.min_size, self.model_tester.max_size] | |
) | |
# let's set num_channels to 1 | |
config.num_channels = 1 | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
self.assertTrue(outputs) | |
def test_initialization(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
configs_no_init = _config_zero_init(config) | |
configs_no_init.init_xavier_std = 1e9 | |
for model_class in self.all_model_classes: | |
model = model_class(config=configs_no_init) | |
for name, param in model.named_parameters(): | |
if param.requires_grad: | |
if "bbox_attention" in name and "bias" not in name: | |
self.assertLess( | |
100000, | |
abs(param.data.max().item()), | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
else: | |
self.assertIn( | |
((param.data.mean() * 1e9).round() / 1e9).item(), | |
[0.0, 1.0], | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
TOLERANCE = 1e-4 | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
return image | |
class DetrModelIntegrationTestsTimmBackbone(unittest.TestCase): | |
def default_feature_extractor(self): | |
return DetrFeatureExtractor.from_pretrained("facebook/detr-resnet-50") if is_vision_available() else None | |
def test_inference_no_head(self): | |
model = DetrModel.from_pretrained("facebook/detr-resnet-50").to(torch_device) | |
feature_extractor = self.default_feature_extractor | |
image = prepare_img() | |
encoding = feature_extractor(images=image, return_tensors="pt").to(torch_device) | |
with torch.no_grad(): | |
outputs = model(**encoding) | |
expected_shape = torch.Size((1, 100, 256)) | |
assert outputs.last_hidden_state.shape == expected_shape | |
expected_slice = torch.tensor( | |
[[0.0616, -0.5146, -0.4032], [-0.7629, -0.4934, -1.7153], [-0.4768, -0.6403, -0.7826]] | |
).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) | |
def test_inference_object_detection_head(self): | |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50").to(torch_device) | |
feature_extractor = self.default_feature_extractor | |
image = prepare_img() | |
encoding = feature_extractor(images=image, return_tensors="pt").to(torch_device) | |
pixel_values = encoding["pixel_values"].to(torch_device) | |
pixel_mask = encoding["pixel_mask"].to(torch_device) | |
with torch.no_grad(): | |
outputs = model(pixel_values, pixel_mask) | |
# verify outputs | |
expected_shape_logits = torch.Size((1, model.config.num_queries, model.config.num_labels + 1)) | |
self.assertEqual(outputs.logits.shape, expected_shape_logits) | |
expected_slice_logits = torch.tensor( | |
[[-19.1194, -0.0893, -11.0154], [-17.3640, -1.8035, -14.0219], [-20.0461, -0.5837, -11.1060]] | |
).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice_logits, atol=1e-4)) | |
expected_shape_boxes = torch.Size((1, model.config.num_queries, 4)) | |
self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes) | |
expected_slice_boxes = torch.tensor( | |
[[0.4433, 0.5302, 0.8853], [0.5494, 0.2517, 0.0529], [0.4998, 0.5360, 0.9956]] | |
).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4)) | |
# verify postprocessing | |
results = feature_extractor.post_process_object_detection( | |
outputs, threshold=0.3, target_sizes=[image.size[::-1]] | |
)[0] | |
expected_scores = torch.tensor([0.9982, 0.9960, 0.9955, 0.9988, 0.9987]).to(torch_device) | |
expected_labels = [75, 75, 63, 17, 17] | |
expected_slice_boxes = torch.tensor([40.1633, 70.8115, 175.5471, 117.9841]).to(torch_device) | |
self.assertEqual(len(results["scores"]), 5) | |
self.assertTrue(torch.allclose(results["scores"], expected_scores, atol=1e-4)) | |
self.assertSequenceEqual(results["labels"].tolist(), expected_labels) | |
self.assertTrue(torch.allclose(results["boxes"][0, :], expected_slice_boxes)) | |
def test_inference_panoptic_segmentation_head(self): | |
model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic").to(torch_device) | |
feature_extractor = self.default_feature_extractor | |
image = prepare_img() | |
encoding = feature_extractor(images=image, return_tensors="pt").to(torch_device) | |
pixel_values = encoding["pixel_values"].to(torch_device) | |
pixel_mask = encoding["pixel_mask"].to(torch_device) | |
with torch.no_grad(): | |
outputs = model(pixel_values, pixel_mask) | |
# verify outputs | |
expected_shape_logits = torch.Size((1, model.config.num_queries, model.config.num_labels + 1)) | |
self.assertEqual(outputs.logits.shape, expected_shape_logits) | |
expected_slice_logits = torch.tensor( | |
[[-18.1565, -1.7568, -13.5029], [-16.8888, -1.4138, -14.1028], [-17.5709, -2.5080, -11.8654]] | |
).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice_logits, atol=1e-4)) | |
expected_shape_boxes = torch.Size((1, model.config.num_queries, 4)) | |
self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes) | |
expected_slice_boxes = torch.tensor( | |
[[0.5344, 0.1789, 0.9285], [0.4420, 0.0572, 0.0875], [0.6630, 0.6887, 0.1017]] | |
).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4)) | |
expected_shape_masks = torch.Size((1, model.config.num_queries, 200, 267)) | |
self.assertEqual(outputs.pred_masks.shape, expected_shape_masks) | |
expected_slice_masks = torch.tensor( | |
[[-7.7558, -10.8788, -11.9797], [-11.8881, -16.4329, -17.7451], [-14.7316, -19.7383, -20.3004]] | |
).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.pred_masks[0, 0, :3, :3], expected_slice_masks, atol=1e-3)) | |
# verify postprocessing | |
results = feature_extractor.post_process_panoptic_segmentation( | |
outputs, threshold=0.3, target_sizes=[image.size[::-1]] | |
)[0] | |
expected_shape = torch.Size([480, 640]) | |
expected_slice_segmentation = torch.tensor([[4, 4, 4], [4, 4, 4], [4, 4, 4]], dtype=torch.int32).to( | |
torch_device | |
) | |
expected_number_of_segments = 5 | |
expected_first_segment = {"id": 1, "label_id": 17, "was_fused": False, "score": 0.994096} | |
number_of_unique_segments = len(torch.unique(results["segmentation"])) | |
self.assertTrue( | |
number_of_unique_segments, expected_number_of_segments + 1 | |
) # we add 1 for the background class | |
self.assertTrue(results["segmentation"].shape, expected_shape) | |
self.assertTrue(torch.allclose(results["segmentation"][:3, :3], expected_slice_segmentation, atol=1e-4)) | |
self.assertTrue(len(results["segments_info"]), expected_number_of_segments) | |
self.assertDictEqual(results["segments_info"][0], expected_first_segment) | |
class DetrModelIntegrationTests(unittest.TestCase): | |
def default_feature_extractor(self): | |
return ( | |
DetrFeatureExtractor.from_pretrained("facebook/detr-resnet-50", revision="no_timm") | |
if is_vision_available() | |
else None | |
) | |
def test_inference_no_head(self): | |
model = DetrModel.from_pretrained("facebook/detr-resnet-50", revision="no_timm").to(torch_device) | |
feature_extractor = self.default_feature_extractor | |
image = prepare_img() | |
encoding = feature_extractor(images=image, return_tensors="pt").to(torch_device) | |
with torch.no_grad(): | |
outputs = model(**encoding) | |
expected_shape = torch.Size((1, 100, 256)) | |
assert outputs.last_hidden_state.shape == expected_shape | |
expected_slice = torch.tensor( | |
[[0.0616, -0.5146, -0.4032], [-0.7629, -0.4934, -1.7153], [-0.4768, -0.6403, -0.7826]] | |
).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) | |