Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import sys | |
import tempfile | |
import unittest | |
import unittest.mock as mock | |
from pathlib import Path | |
from huggingface_hub import HfFolder, delete_repo | |
from requests.exceptions import HTTPError | |
from transformers import AutoFeatureExtractor, Wav2Vec2FeatureExtractor | |
from transformers.testing_utils import TOKEN, USER, check_json_file_has_correct_format, get_tests_dir, is_staging_test | |
sys.path.append(str(Path(__file__).parent.parent / "utils")) | |
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 | |
SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = get_tests_dir("fixtures") | |
class FeatureExtractionSavingTestMixin: | |
test_cast_dtype = None | |
def test_feat_extract_to_json_string(self): | |
feat_extract = self.feature_extraction_class(**self.feat_extract_dict) | |
obj = json.loads(feat_extract.to_json_string()) | |
for key, value in self.feat_extract_dict.items(): | |
self.assertEqual(obj[key], value) | |
def test_feat_extract_to_json_file(self): | |
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
json_file_path = os.path.join(tmpdirname, "feat_extract.json") | |
feat_extract_first.to_json_file(json_file_path) | |
feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path) | |
self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict()) | |
def test_feat_extract_from_and_save_pretrained(self): | |
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
saved_file = feat_extract_first.save_pretrained(tmpdirname)[0] | |
check_json_file_has_correct_format(saved_file) | |
feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname) | |
self.assertEqual(feat_extract_second.to_dict(), feat_extract_first.to_dict()) | |
def test_init_without_params(self): | |
feat_extract = self.feature_extraction_class() | |
self.assertIsNotNone(feat_extract) | |
class FeatureExtractorUtilTester(unittest.TestCase): | |
def test_cached_files_are_used_when_internet_is_down(self): | |
# A mock response for an HTTP head request to emulate server down | |
response_mock = mock.Mock() | |
response_mock.status_code = 500 | |
response_mock.headers = {} | |
response_mock.raise_for_status.side_effect = HTTPError | |
response_mock.json.return_value = {} | |
# Download this model to make sure it's in the cache. | |
_ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2") | |
# Under the mock environment we get a 500 error when trying to reach the model. | |
with mock.patch("requests.request", return_value=response_mock) as mock_head: | |
_ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2") | |
# This check we did call the fake head request | |
mock_head.assert_called() | |
def test_legacy_load_from_url(self): | |
# This test is for deprecated behavior and can be removed in v5 | |
_ = Wav2Vec2FeatureExtractor.from_pretrained( | |
"https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" | |
) | |
class FeatureExtractorPushToHubTester(unittest.TestCase): | |
def setUpClass(cls): | |
cls._token = TOKEN | |
HfFolder.save_token(TOKEN) | |
def tearDownClass(cls): | |
try: | |
delete_repo(token=cls._token, repo_id="test-feature-extractor") | |
except HTTPError: | |
pass | |
try: | |
delete_repo(token=cls._token, repo_id="valid_org/test-feature-extractor-org") | |
except HTTPError: | |
pass | |
try: | |
delete_repo(token=cls._token, repo_id="test-dynamic-feature-extractor") | |
except HTTPError: | |
pass | |
def test_push_to_hub(self): | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR) | |
feature_extractor.push_to_hub("test-feature-extractor", use_auth_token=self._token) | |
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor") | |
for k, v in feature_extractor.__dict__.items(): | |
self.assertEqual(v, getattr(new_feature_extractor, k)) | |
# Reset repo | |
delete_repo(token=self._token, repo_id="test-feature-extractor") | |
# Push to hub via save_pretrained | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
feature_extractor.save_pretrained( | |
tmp_dir, repo_id="test-feature-extractor", push_to_hub=True, use_auth_token=self._token | |
) | |
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor") | |
for k, v in feature_extractor.__dict__.items(): | |
self.assertEqual(v, getattr(new_feature_extractor, k)) | |
def test_push_to_hub_in_organization(self): | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR) | |
feature_extractor.push_to_hub("valid_org/test-feature-extractor", use_auth_token=self._token) | |
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("valid_org/test-feature-extractor") | |
for k, v in feature_extractor.__dict__.items(): | |
self.assertEqual(v, getattr(new_feature_extractor, k)) | |
# Reset repo | |
delete_repo(token=self._token, repo_id="valid_org/test-feature-extractor") | |
# Push to hub via save_pretrained | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
feature_extractor.save_pretrained( | |
tmp_dir, repo_id="valid_org/test-feature-extractor-org", push_to_hub=True, use_auth_token=self._token | |
) | |
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org") | |
for k, v in feature_extractor.__dict__.items(): | |
self.assertEqual(v, getattr(new_feature_extractor, k)) | |
def test_push_to_hub_dynamic_feature_extractor(self): | |
CustomFeatureExtractor.register_for_auto_class() | |
feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR) | |
feature_extractor.push_to_hub("test-dynamic-feature-extractor", use_auth_token=self._token) | |
# This has added the proper auto_map field to the config | |
self.assertDictEqual( | |
feature_extractor.auto_map, | |
{"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"}, | |
) | |
new_feature_extractor = AutoFeatureExtractor.from_pretrained( | |
f"{USER}/test-dynamic-feature-extractor", trust_remote_code=True | |
) | |
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module | |
self.assertEqual(new_feature_extractor.__class__.__name__, "CustomFeatureExtractor") | |