Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import sys | |
import tempfile | |
import unittest | |
import unittest.mock as mock | |
from pathlib import Path | |
from huggingface_hub import HfFolder, delete_repo | |
from requests.exceptions import HTTPError | |
from transformers import AutoImageProcessor, ViTImageProcessor | |
from transformers.testing_utils import ( | |
TOKEN, | |
USER, | |
check_json_file_has_correct_format, | |
get_tests_dir, | |
is_staging_test, | |
require_torch, | |
require_vision, | |
) | |
from transformers.utils import is_torch_available, is_vision_available | |
sys.path.append(str(Path(__file__).parent.parent / "utils")) | |
from test_module.custom_image_processing import CustomImageProcessor # noqa E402 | |
if is_torch_available(): | |
import numpy as np | |
import torch | |
if is_vision_available(): | |
from PIL import Image | |
SAMPLE_IMAGE_PROCESSING_CONFIG_DIR = get_tests_dir("fixtures") | |
def prepare_image_inputs(image_processor_tester, equal_resolution=False, numpify=False, torchify=False): | |
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, | |
or a list of PyTorch tensors if one specifies torchify=True. | |
One can specify whether the images are of the same resolution or not. | |
""" | |
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" | |
image_inputs = [] | |
for i in range(image_processor_tester.batch_size): | |
if equal_resolution: | |
width = height = image_processor_tester.max_resolution | |
else: | |
# To avoid getting image width/height 0 | |
min_resolution = image_processor_tester.min_resolution | |
if getattr(image_processor_tester, "size_divisor", None): | |
# If `size_divisor` is defined, the image needs to have width/size >= `size_divisor` | |
min_resolution = max(image_processor_tester.size_divisor, min_resolution) | |
width, height = np.random.choice(np.arange(min_resolution, image_processor_tester.max_resolution), 2) | |
image_inputs.append( | |
np.random.randint(255, size=(image_processor_tester.num_channels, width, height), dtype=np.uint8) | |
) | |
if not numpify and not torchify: | |
# PIL expects the channel dimension as last dimension | |
image_inputs = [Image.fromarray(np.moveaxis(image, 0, -1)) for image in image_inputs] | |
if torchify: | |
image_inputs = [torch.from_numpy(image) for image in image_inputs] | |
return image_inputs | |
def prepare_video(image_processor_tester, width=10, height=10, numpify=False, torchify=False): | |
"""This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors.""" | |
video = [] | |
for i in range(image_processor_tester.num_frames): | |
video.append(np.random.randint(255, size=(image_processor_tester.num_channels, width, height), dtype=np.uint8)) | |
if not numpify and not torchify: | |
# PIL expects the channel dimension as last dimension | |
video = [Image.fromarray(np.moveaxis(frame, 0, -1)) for frame in video] | |
if torchify: | |
video = [torch.from_numpy(frame) for frame in video] | |
return video | |
def prepare_video_inputs(image_processor_tester, equal_resolution=False, numpify=False, torchify=False): | |
"""This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if | |
one specifies numpify=True, or a list of list of PyTorch tensors if one specifies torchify=True. | |
One can specify whether the videos are of the same resolution or not. | |
""" | |
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" | |
video_inputs = [] | |
for i in range(image_processor_tester.batch_size): | |
if equal_resolution: | |
width = height = image_processor_tester.max_resolution | |
else: | |
width, height = np.random.choice( | |
np.arange(image_processor_tester.min_resolution, image_processor_tester.max_resolution), 2 | |
) | |
video = prepare_video( | |
image_processor_tester=image_processor_tester, | |
width=width, | |
height=height, | |
numpify=numpify, | |
torchify=torchify, | |
) | |
video_inputs.append(video) | |
return video_inputs | |
class ImageProcessingSavingTestMixin: | |
test_cast_dtype = None | |
def test_image_processor_to_json_string(self): | |
image_processor = self.image_processing_class(**self.image_processor_dict) | |
obj = json.loads(image_processor.to_json_string()) | |
for key, value in self.image_processor_dict.items(): | |
self.assertEqual(obj[key], value) | |
def test_image_processor_to_json_file(self): | |
image_processor_first = self.image_processing_class(**self.image_processor_dict) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
json_file_path = os.path.join(tmpdirname, "image_processor.json") | |
image_processor_first.to_json_file(json_file_path) | |
image_processor_second = self.image_processing_class.from_json_file(json_file_path) | |
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict()) | |
def test_image_processor_from_and_save_pretrained(self): | |
image_processor_first = self.image_processing_class(**self.image_processor_dict) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
saved_file = image_processor_first.save_pretrained(tmpdirname)[0] | |
check_json_file_has_correct_format(saved_file) | |
image_processor_second = self.image_processing_class.from_pretrained(tmpdirname) | |
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict()) | |
def test_init_without_params(self): | |
image_processor = self.image_processing_class() | |
self.assertIsNotNone(image_processor) | |
def test_cast_dtype_device(self): | |
if self.test_cast_dtype is not None: | |
# Initialize image_processor | |
image_processor = self.image_processing_class(**self.image_processor_dict) | |
# create random PyTorch tensors | |
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True) | |
encoding = image_processor(image_inputs, return_tensors="pt") | |
# for layoutLM compatiblity | |
self.assertEqual(encoding.pixel_values.device, torch.device("cpu")) | |
self.assertEqual(encoding.pixel_values.dtype, torch.float32) | |
encoding = image_processor(image_inputs, return_tensors="pt").to(torch.float16) | |
self.assertEqual(encoding.pixel_values.device, torch.device("cpu")) | |
self.assertEqual(encoding.pixel_values.dtype, torch.float16) | |
encoding = image_processor(image_inputs, return_tensors="pt").to("cpu", torch.bfloat16) | |
self.assertEqual(encoding.pixel_values.device, torch.device("cpu")) | |
self.assertEqual(encoding.pixel_values.dtype, torch.bfloat16) | |
with self.assertRaises(TypeError): | |
_ = image_processor(image_inputs, return_tensors="pt").to(torch.bfloat16, "cpu") | |
# Try with text + image feature | |
encoding = image_processor(image_inputs, return_tensors="pt") | |
encoding.update({"input_ids": torch.LongTensor([[1, 2, 3], [4, 5, 6]])}) | |
encoding = encoding.to(torch.float16) | |
self.assertEqual(encoding.pixel_values.device, torch.device("cpu")) | |
self.assertEqual(encoding.pixel_values.dtype, torch.float16) | |
self.assertEqual(encoding.input_ids.dtype, torch.long) | |
class ImageProcessorUtilTester(unittest.TestCase): | |
def test_cached_files_are_used_when_internet_is_down(self): | |
# A mock response for an HTTP head request to emulate server down | |
response_mock = mock.Mock() | |
response_mock.status_code = 500 | |
response_mock.headers = {} | |
response_mock.raise_for_status.side_effect = HTTPError | |
response_mock.json.return_value = {} | |
# Download this model to make sure it's in the cache. | |
_ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") | |
# Under the mock environment we get a 500 error when trying to reach the model. | |
with mock.patch("requests.request", return_value=response_mock) as mock_head: | |
_ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") | |
# This check we did call the fake head request | |
mock_head.assert_called() | |
def test_legacy_load_from_url(self): | |
# This test is for deprecated behavior and can be removed in v5 | |
_ = ViTImageProcessor.from_pretrained( | |
"https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json" | |
) | |
class ImageProcessorPushToHubTester(unittest.TestCase): | |
def setUpClass(cls): | |
cls._token = TOKEN | |
HfFolder.save_token(TOKEN) | |
def tearDownClass(cls): | |
try: | |
delete_repo(token=cls._token, repo_id="test-image-processor") | |
except HTTPError: | |
pass | |
try: | |
delete_repo(token=cls._token, repo_id="valid_org/test-image-processor-org") | |
except HTTPError: | |
pass | |
try: | |
delete_repo(token=cls._token, repo_id="test-dynamic-image-processor") | |
except HTTPError: | |
pass | |
def test_push_to_hub(self): | |
image_processor = ViTImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR) | |
image_processor.push_to_hub("test-image-processor", use_auth_token=self._token) | |
new_image_processor = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor") | |
for k, v in image_processor.__dict__.items(): | |
self.assertEqual(v, getattr(new_image_processor, k)) | |
# Reset repo | |
delete_repo(token=self._token, repo_id="test-image-processor") | |
# Push to hub via save_pretrained | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
image_processor.save_pretrained( | |
tmp_dir, repo_id="test-image-processor", push_to_hub=True, use_auth_token=self._token | |
) | |
new_image_processor = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor") | |
for k, v in image_processor.__dict__.items(): | |
self.assertEqual(v, getattr(new_image_processor, k)) | |
def test_push_to_hub_in_organization(self): | |
image_processor = ViTImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR) | |
image_processor.push_to_hub("valid_org/test-image-processor", use_auth_token=self._token) | |
new_image_processor = ViTImageProcessor.from_pretrained("valid_org/test-image-processor") | |
for k, v in image_processor.__dict__.items(): | |
self.assertEqual(v, getattr(new_image_processor, k)) | |
# Reset repo | |
delete_repo(token=self._token, repo_id="valid_org/test-image-processor") | |
# Push to hub via save_pretrained | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
image_processor.save_pretrained( | |
tmp_dir, repo_id="valid_org/test-image-processor-org", push_to_hub=True, use_auth_token=self._token | |
) | |
new_image_processor = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org") | |
for k, v in image_processor.__dict__.items(): | |
self.assertEqual(v, getattr(new_image_processor, k)) | |
def test_push_to_hub_dynamic_image_processor(self): | |
CustomImageProcessor.register_for_auto_class() | |
image_processor = CustomImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR) | |
image_processor.push_to_hub("test-dynamic-image-processor", use_auth_token=self._token) | |
# This has added the proper auto_map field to the config | |
self.assertDictEqual( | |
image_processor.auto_map, | |
{"ImageProcessor": "custom_image_processing.CustomImageProcessor"}, | |
) | |
new_image_processor = AutoImageProcessor.from_pretrained( | |
f"{USER}/test-dynamic-image-processor", trust_remote_code=True | |
) | |
# Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module | |
self.assertEqual(new_image_processor.__class__.__name__, "CustomImageProcessor") | |
def test_image_processor_from_pretrained_subfolder(self): | |
with self.assertRaises(OSError): | |
# config is in subfolder, the following should not work without specifying the subfolder | |
_ = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants") | |
config = AutoImageProcessor.from_pretrained( | |
"hf-internal-testing/stable-diffusion-all-variants", subfolder="feature_extractor" | |
) | |
self.assertIsNotNone(config) | |