Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2019-present, the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
from transformers.testing_utils import require_flax, require_tf, require_torch | |
from transformers.utils import ( | |
expand_dims, | |
flatten_dict, | |
is_flax_available, | |
is_tf_available, | |
is_torch_available, | |
reshape, | |
squeeze, | |
transpose, | |
) | |
if is_flax_available(): | |
import jax.numpy as jnp | |
if is_tf_available(): | |
import tensorflow as tf | |
if is_torch_available(): | |
import torch | |
class GenericTester(unittest.TestCase): | |
def test_flatten_dict(self): | |
input_dict = { | |
"task_specific_params": { | |
"summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, | |
"summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, | |
"summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, | |
} | |
} | |
expected_dict = { | |
"task_specific_params.summarization.length_penalty": 1.0, | |
"task_specific_params.summarization.max_length": 128, | |
"task_specific_params.summarization.min_length": 12, | |
"task_specific_params.summarization.num_beams": 4, | |
"task_specific_params.summarization_cnn.length_penalty": 2.0, | |
"task_specific_params.summarization_cnn.max_length": 142, | |
"task_specific_params.summarization_cnn.min_length": 56, | |
"task_specific_params.summarization_cnn.num_beams": 4, | |
"task_specific_params.summarization_xsum.length_penalty": 1.0, | |
"task_specific_params.summarization_xsum.max_length": 62, | |
"task_specific_params.summarization_xsum.min_length": 11, | |
"task_specific_params.summarization_xsum.num_beams": 6, | |
} | |
self.assertEqual(flatten_dict(input_dict), expected_dict) | |
def test_transpose_numpy(self): | |
x = np.random.randn(3, 4) | |
self.assertTrue(np.allclose(transpose(x), x.transpose())) | |
x = np.random.randn(3, 4, 5) | |
self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), x.transpose((1, 2, 0)))) | |
def test_transpose_torch(self): | |
x = np.random.randn(3, 4) | |
t = torch.tensor(x) | |
self.assertTrue(np.allclose(transpose(x), transpose(t).numpy())) | |
x = np.random.randn(3, 4, 5) | |
t = torch.tensor(x) | |
self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), transpose(t, axes=(1, 2, 0)).numpy())) | |
def test_transpose_tf(self): | |
x = np.random.randn(3, 4) | |
t = tf.constant(x) | |
self.assertTrue(np.allclose(transpose(x), transpose(t).numpy())) | |
x = np.random.randn(3, 4, 5) | |
t = tf.constant(x) | |
self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), transpose(t, axes=(1, 2, 0)).numpy())) | |
def test_transpose_flax(self): | |
x = np.random.randn(3, 4) | |
t = jnp.array(x) | |
self.assertTrue(np.allclose(transpose(x), np.asarray(transpose(t)))) | |
x = np.random.randn(3, 4, 5) | |
t = jnp.array(x) | |
self.assertTrue(np.allclose(transpose(x, axes=(1, 2, 0)), np.asarray(transpose(t, axes=(1, 2, 0))))) | |
def test_reshape_numpy(self): | |
x = np.random.randn(3, 4) | |
self.assertTrue(np.allclose(reshape(x, (4, 3)), np.reshape(x, (4, 3)))) | |
x = np.random.randn(3, 4, 5) | |
self.assertTrue(np.allclose(reshape(x, (12, 5)), np.reshape(x, (12, 5)))) | |
def test_reshape_torch(self): | |
x = np.random.randn(3, 4) | |
t = torch.tensor(x) | |
self.assertTrue(np.allclose(reshape(x, (4, 3)), reshape(t, (4, 3)).numpy())) | |
x = np.random.randn(3, 4, 5) | |
t = torch.tensor(x) | |
self.assertTrue(np.allclose(reshape(x, (12, 5)), reshape(t, (12, 5)).numpy())) | |
def test_reshape_tf(self): | |
x = np.random.randn(3, 4) | |
t = tf.constant(x) | |
self.assertTrue(np.allclose(reshape(x, (4, 3)), reshape(t, (4, 3)).numpy())) | |
x = np.random.randn(3, 4, 5) | |
t = tf.constant(x) | |
self.assertTrue(np.allclose(reshape(x, (12, 5)), reshape(t, (12, 5)).numpy())) | |
def test_reshape_flax(self): | |
x = np.random.randn(3, 4) | |
t = jnp.array(x) | |
self.assertTrue(np.allclose(reshape(x, (4, 3)), np.asarray(reshape(t, (4, 3))))) | |
x = np.random.randn(3, 4, 5) | |
t = jnp.array(x) | |
self.assertTrue(np.allclose(reshape(x, (12, 5)), np.asarray(reshape(t, (12, 5))))) | |
def test_squeeze_numpy(self): | |
x = np.random.randn(1, 3, 4) | |
self.assertTrue(np.allclose(squeeze(x), np.squeeze(x))) | |
x = np.random.randn(1, 4, 1, 5) | |
self.assertTrue(np.allclose(squeeze(x, axis=2), np.squeeze(x, axis=2))) | |
def test_squeeze_torch(self): | |
x = np.random.randn(1, 3, 4) | |
t = torch.tensor(x) | |
self.assertTrue(np.allclose(squeeze(x), squeeze(t).numpy())) | |
x = np.random.randn(1, 4, 1, 5) | |
t = torch.tensor(x) | |
self.assertTrue(np.allclose(squeeze(x, axis=2), squeeze(t, axis=2).numpy())) | |
def test_squeeze_tf(self): | |
x = np.random.randn(1, 3, 4) | |
t = tf.constant(x) | |
self.assertTrue(np.allclose(squeeze(x), squeeze(t).numpy())) | |
x = np.random.randn(1, 4, 1, 5) | |
t = tf.constant(x) | |
self.assertTrue(np.allclose(squeeze(x, axis=2), squeeze(t, axis=2).numpy())) | |
def test_squeeze_flax(self): | |
x = np.random.randn(1, 3, 4) | |
t = jnp.array(x) | |
self.assertTrue(np.allclose(squeeze(x), np.asarray(squeeze(t)))) | |
x = np.random.randn(1, 4, 1, 5) | |
t = jnp.array(x) | |
self.assertTrue(np.allclose(squeeze(x, axis=2), np.asarray(squeeze(t, axis=2)))) | |
def test_expand_dims_numpy(self): | |
x = np.random.randn(3, 4) | |
self.assertTrue(np.allclose(expand_dims(x, axis=1), np.expand_dims(x, axis=1))) | |
def test_expand_dims_torch(self): | |
x = np.random.randn(3, 4) | |
t = torch.tensor(x) | |
self.assertTrue(np.allclose(expand_dims(x, axis=1), expand_dims(t, axis=1).numpy())) | |
def test_expand_dims_tf(self): | |
x = np.random.randn(3, 4) | |
t = tf.constant(x) | |
self.assertTrue(np.allclose(expand_dims(x, axis=1), expand_dims(t, axis=1).numpy())) | |
def test_expand_dims_flax(self): | |
x = np.random.randn(3, 4) | |
t = jnp.array(x) | |
self.assertTrue(np.allclose(expand_dims(x, axis=1), np.asarray(expand_dims(t, axis=1)))) | |